Answer Question\#61364 Physics - Electromagnetism

13) An ac circuit consists of voltage source $V=200 \sin 120 \pi t$ and a $6 \mu F$ capacitor in series. Calculate the current establish in the circuit
a) 0.32 A
b) 1.24 A
c) 0.64 A
d) 2.13 A

Solution. Capacitive reactance can be calculate using formula $X_{C}=\frac{1}{\omega C}$ (where $\omega=2 \pi f, f$ frequency, C - capacitance). Using Ohm's law $I=\frac{V}{X_{C}}$. Hence $I=\frac{V}{X_{C}}=\frac{200 \sin 120 \pi t}{\frac{1}{\omega C}}=$ $200 \omega C \sin 120 \pi t$.
$I=200 \omega C \sin 120 \pi t=200 \cdot 120 \pi \cdot 6 \cdot 10^{-6} \sin 120 \pi t=0.452 \sin 120 \pi t$
$\mathrm{I}_{\text {max }}=0.452 \mathrm{~A}$. The current establish in the circuit $I=\frac{\mathrm{I}_{\text {max }}}{\sqrt{2}}=\frac{0.452}{\sqrt{2}} \approx 0.32 \mathrm{~A}$.
Answer. a) 0.32A
14) An RLC circuit contains an as voltage source with rms value of 50 V and has frequency of 600 Hz . Suppose that a resistance $R=20 \Omega$, capacitance $C=10.0 \mu F$ and an inductance $L=4.0 \mathrm{mH}$ are connected in series to the source. Find the current in the circuit and the voltmeter reading across the inductor.
a) 2.17 A and 32.8 V
b) 1.6 A and 24.2 V
c) 0.13 A and 12.1 V
d) 4.0 A and 23.1 V

Solution. We can find capacitive reactance and inductive reactance using formula:
$X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi f C}, X_{L}=\omega L=2 \pi f L$.
According to the condition of the problem $f=600 \mathrm{~Hz}$ - frequency; $L=4 \cdot 10^{-3} \mathrm{H}$ - inductance, $C=10.0 \cdot 10^{-6} F$ - capacitance. Substituting these values get
$X_{C}=\frac{1}{2 \pi \cdot 600 \cdot 10.0 \cdot 10^{-6}} \approx 26.5 \Omega$
$X_{L}=2 \pi \cdot 600 \cdot 4 \cdot 10^{-3} \approx 15.1 \Omega$
We can find impedance of an RLC series circuit using formula:
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \rightarrow Z=\sqrt{20^{2}+(15.1-26.5)^{2}} \approx 23 \Omega$.
Find current using Ohm's law formula: $I=\frac{V}{z} \rightarrow I=\frac{50 \mathrm{~V}}{23 \Omega} \approx 2.17 \mathrm{~A}$.
Using Ohm's law formula for inductor get $I=\frac{V_{L}}{X_{L}} \rightarrow V_{L}=I X_{L}=2.17 \cdot 15.1 \approx 32.8 \mathrm{~V}$. (current same because in series).
Answer. a) 2.17A and 32.8V.

