

Answer on Question#61363 – Physics – Electromagnetism

11) An air-cored transformer is assumed to be 100% efficient. The ratio of the secondary turns to the primary turns is 1:20. A 240V ac supply is connected to the primary coil and a 6Ω load is connected to the secondary coil. what is the current in the primary coil?

- a) 0.10A
- b) 0.14A
- c) 2.0A
- d) 40.0A

Solution. According to the conditions of the problem $\frac{N_2}{N_1} = \frac{1}{20}$, $R_2 = 6\Omega$ where N_1, N_2 – turns in primary and secondary coil, R_2 – resistor secondary coil. Using formula for transformer $\frac{V_2}{V_1} = \frac{N_2}{N_1}$ (V_1, V_2 – voltage in primary and secondary coil.). Therefore $V_2 = V_1 \frac{N_2}{N_1} \rightarrow V_2 = 240 \frac{1}{20} = 12V$.

Using Ohm's law $I = \frac{V}{R}$ find current in secondary coil. $I_2 = \frac{12}{6} = 2A$.

From definition electric power $P = VI$. For secondary coil power $P_2 = 12 \cdot 2 = 24W$.

An air-cored transformer is assumed to be 100% efficient. Hence $P_1 = P_2$.

$$V_1 I_1 = V_2 I_2 \rightarrow I_1 = \frac{V_2 I_2}{V_1} = \frac{24}{240} = 0.1A$$

Answer. a) 0.1A.

12) A voltmeter connected across a 60Hz ac source reads 240V. Write down the expression of the instantaneous voltage as a function of time.

- a) $240\sin 339.4t$
- b) $339.4\sin 377t$
- c) $377\cos 339.4t$
- d) $240\cos 339.4t$

Solution. The General equation of the instantaneous voltage of the alternating current has the form $V = V_0 \sin \omega t = V_0 \sin 2\pi f t$, where V_0 – peak voltage, f – frequency. Using relationship between peak voltage and rms voltage $V = \frac{V_0}{\sqrt{2}}$. A voltmeter show rms voltage hence peak voltage $V_0 = V\sqrt{2} = 240\sqrt{2} \approx 339.4V$.

$$2\pi f = 2\pi \cdot 60 \approx 377 \frac{rad}{s}$$
 Therefore

$$V = 339.4 \sin 377t$$

Answer. b) $339.4 \sin 377t$.