Answer on Question \#61362-Physics-Electromagnetism

9) A certain generator consists of a rectangular coil of 250 turns and an area of 50 cm 2 . The coil rotates at a speed of 100 revolutions per second in a horizontal magnetic field 0.3 . Calculate the maximum induced emf in the coil and the induced emf when the plane of the coil is inclined at an angle of 350 to the horizontal
a) $\mathbf{2 3 5} \mathbf{6} \mathbf{6}$ and $\mathbf{1 9 3 . 0 V}$
b) 344.2 V and 230.2 V
c) 144.3 V and 96.5 V
d) 56.4 V and 26.7 V

Solution

Let's use the Faraday's law and find the emf generated between the ends of the coil:

$$
\mathcal{E}=-\frac{d \Phi_{B}}{\mathrm{dt}}=-\frac{d(N B A \cos \theta)}{d t}
$$

here, \mathcal{E} is the emf generated between the ends of the coil, ΦB is the magnetic flux through the coil, N is the number of turns of the coil, B is the magnetic field, A is the cross-sectional area of the coil, θ is the angle between the magnetic field and the normal to the plane of the coil.

Since $\theta=\omega t$, we get:

$$
\mathcal{E}=-\frac{d(N B A \cos \omega \mathrm{t})}{d t}=N B A \omega \sin \omega t .
$$

The maximum value of the emf induced in the coil when $\theta=\omega t=90^{\circ}$, so that the coil is in the plane of the magnetic field: $\mathcal{E} \max =N B A \omega$,
here, ω is the angular frequency with which the coil rotates in a magnetic field.
Let's convert revs/ to rads/:

$$
\omega=\left(100 \frac{r e v}{s}\right) \cdot\left(\frac{2 \pi r a d}{1 r e v}\right)=628.32 \mathrm{rad}
$$

Finally, substituting ω into the formula for $\mathcal{E m a x}$, we can calculate the maximum value of the induced emf:

$$
\varepsilon \max =N B A \omega=250 \cdot 0.3 \cdot 5 \cdot 10^{-3} \cdot 628.32=235.6 \mathrm{~V}
$$

b) To find the induced emf when the plane of the coil is inclined at an angle of $\theta=35^{\circ}$ to the horizontal (to the lines of the magnetic field), we can use the formula: $\mathcal{E}=N B A \omega \sin \omega t$.

Let's substitute the numbers:

$$
\mathcal{E}=N B A \omega \sin \omega t=250 \cdot 0.3 \cdot 5 \cdot 10^{-3} \cdot 628.32 \cdot \sin 35^{\circ}=135.13 \mathrm{~V}
$$

10) At which of the following values of t is the magnitude of the emf induced in the coil a maximum if a magnetic field perpendicular to the plane of a flat coil of copper wire has a time variation of the magnetic flux density given by $B=B \operatorname{sosin}(2 U ̀ t=T)$ where $B o$ is the peak value of the magnetic flux density and T the period
a) $T / 8$
b) $T / 4$
c) $3 T / 8$
d) $\mathrm{T} / 2$

Solution

Function $\sin x$ has maximum at $\frac{\pi}{2}$.

$$
\frac{\pi}{2}=\frac{2 \pi t}{T} \rightarrow t=\frac{T}{4} .
$$

So the function

$$
B=B_{o} \sin \frac{2 \pi t}{T}
$$

has a maximum at $t=\frac{T}{4}$.

