

Answer on Question #61358-Physics-Electric Circuits

1) An emf of 5V is suddenly applied to an LR circuit. The value of the resistor in the circuit is 15 $\hat{\Omega}$. At one inductive time constant, what is the rate at which energy is delivered by the battery?

- a) 1.05W
- b) 5.78W
- c) 120.42W
- d) 12.24W

Solution

$$P = UI =$$

$$I = \frac{U}{R} \left(1 - e^{-\frac{t}{\tau}}\right) = \frac{U}{R} (1 - e^{-1}) = \frac{U}{R} \left(1 - \frac{1}{e}\right).$$

$$P = \frac{U^2}{R} \left(1 - \frac{1}{e}\right) = \frac{5^2}{15} \left(1 - \frac{1}{e}\right) = 1.05 \text{ W.}$$

2) A certain inductor has an inductance of 0.50H and a resistance of 2.0. It is placed in series with a switch, a 12.0-V battery and a 4.0 ohms resistor. Find the time constant of the circuit and the energy stored in the inductor.

- a) 0.83s and 100J
- b) 0.032s and 20J
- c) 0.47s and 5J
- d) 0.083s and 1J**

Solution

Time constant is

$$\tau = \frac{L}{r + R} = \frac{0.5}{2 + 4} = 0.083 \text{ s.}$$

$$E = \frac{1}{2} LI^2 = \frac{1}{2} \left(\frac{U}{r + R}\right)^2 = \frac{0.5}{2} \left(\frac{12}{2 + 4}\right)^2 = 1 \text{ J.}$$

<http://www.AssignmentExpert.com>