

Answer on question #61351, Physics, Electromagnetism

7) A capacitor of $2.0\mu F$ is connected to a battery of $2.0V$ through a resistance of $10k\Omega$. What is the initial current in the circuit and the current after $0.02s$?

- a) $0.5\mu A$ and $0.074mA$
- b) $7.4A$ and $5.0mA$
- c) $0.2\mu A$ and $0.074mA$
- d) $6.2\mu A$ and $7.04mA$

Solution:

Current across the capacitor equals:

$$I = \frac{V}{R} \cdot e^{-\frac{t}{RC}}$$

When $t = 0 s$

$$I = \frac{2.0 V}{10 \cdot 10^3 \Omega} \cdot e^{-\frac{0.0s}{10 \cdot 10^3 \Omega \times 2.0 \cdot 10^{-6} F}} = 0.2 mA$$

When $t = 0.02 s$

$$I = \frac{2.0 V}{10 \cdot 10^3 \Omega} \cdot e^{-\frac{0.02s}{10 \cdot 10^3 \Omega \times 2.0 \cdot 10^{-6} F}} = 0.074 \cdot 10^{-3} A = 0.074 mA$$

Answer: 0.2 mA and 0.074 mA

8) A conductor $2cm$ long carrying a current of $8A$ lies at right angles to a magnetic field of which the flux density is $1.0T$. Calculate the force exerted on the conductor?

- a) $0.20N$
- b) $0.16N$
- c) $0.25N$
- d) $0.45N$

Solution:

Ampere force module can be found with the formula:

$$F = IBl \cdot \sin\alpha$$

where α is the angle between magnetic induction and the direction along which the current flows (we know that $\alpha = 90^\circ$).

$$F = 8 A \cdot 1.0T \cdot 0.02 m \cdot \sin 90^\circ = 0.16 N$$

Answer: 0.16 N