Answer on Question 61344, Physics, Electromagnetism

Question:

15) A battery has emf 13.2 V and internal resistance $24 \mathrm{~m} \Omega$. If the load current is 20.0 A , find the terminal voltage of the battery:
a) 12.7 V
b) 14.5 V
c) 16.8 V
d) 17.7 V

Solution:

Let's consider a source of electromotive force (the battery) connected to a resistance R through which a steady current I flows as shown in the picture bellow:

here, \mathcal{E} is the electromotive force of the battery; A and B is the positive and negative terminals of the battery, respectively; R is the resistance connected to the battery; r is the internal resistance of the battery.

Let's denote the potential difference across the resistance R as V and the potential drop across the battery as V_{r}. Then, we can write the formula for the electromotive force of the battery:

$$
\varepsilon=V+V_{r} .
$$

Or

$$
V=\varepsilon-V_{r}
$$

We can find V_{r} from the Ohm's law:

$$
V_{r}=I r .
$$

Let's substitute V_{r} into the previous formula:

$$
V=\mathcal{E}-I r,
$$

here, V is the terminal potential difference of the battery or the terminal voltage of the battery (because we measured it across the terminals A and B).

Let's substitute the numbers:

$$
V=\varepsilon-I r=13.2 V-20.0 A \cdot 24 \cdot 10^{-3} \Omega=12.7 \mathrm{~V}
$$

Answer:

$V=12.7 \mathrm{~V}$.
16) Electrical energy is sold by PHCN in units of kilowatt-hour ($k W h$). The lighting of a house is done with five 60 W bulbs which are swithed on for approximately three hours per day. What is the lighting bill for the household over a period of 30 days at the rate of $N 1.20$ per kilowatt-hour?
a) $N 1.50$
b) $N 25.30$
c) $N 32.40$
d) $N 52.20$

Solution:

Let's first calculate the total energy used by 5 bulbs which are switched on for approximately three hours per day:

$$
E=n P t,
$$

here, n is the number of bulbs, $P=0.06 \mathrm{~kW}$ is the power used by the one bulb, t is the time.

Let's substitute the numbers:

$$
E=n P t=5 \cdot 0.06 \mathrm{~kW} \cdot 3 \frac{\mathrm{~h}}{d a y}=0.9 \frac{\mathrm{kWh}}{d a y} .
$$

Finally, we can calculate the lighting bill for the household over a period of 30 days at the rate of $N 1.20$ per kilowatt-hour:

$$
\text { Lightning Bill }=\text { Rate } \cdot \text { Days } \cdot E=N 1.20 \frac{\$}{\mathrm{kWh}} \cdot 30 \text { days } \cdot 0.9 \frac{\mathrm{kWh}}{\text { day }}=N 32.40 .
$$

Answer:

c) $N 32.40$

