

Answer on Question #61343-Physics-Electric Circuits

13) A battery charger supplies 10 A to charge a storage battery which has an open - circuit voltage of 5.6 V. If the voltmeter connected across the charger reads 6.8V, what is the internal resistance of the battery at this time?

- a) 1.3Ω
- b) 0.52Ω
- c) **0.12Ω**
- d) 2.1Ω

Solution

Since the battery is charging

$$V = E + Ir,$$

where $I = 10 \text{ A}$, $E = 5.6 \text{ V}$, $V = 6.8 \text{ V}$.

The internal resistance of the battery at this time is

$$r = \frac{V - E}{I} = \frac{6.8 - 5.6}{10} = 0.12 \Omega.$$

14) Battery of e.m.f. \mathcal{E} and negligible internal resistance is connected to two resistors of resistances R_1 and R_2 as shown in the figure. What is the potential difference across the resistor of resistance R_2 .

- a) $E(R_1+R_2)R_1$
- b) $ER_2(R_1+R_2)$**
- c) $E(R_1+R_2)R_2$
- d) ER_2R_1

Solution

Two resistors of resistances must be connected in series, because from parallel connection we know $U_1 = U_2 = \mathcal{E}$.

According Kirchhoff law:

$$\mathcal{E} - IR_1 - IR_2 = 0 \rightarrow I = \frac{\mathcal{E}}{R_1 + R_2},$$

where I is the current.

The potential difference across the resistor of resistance R_2 :

$$U_2 = IR_2 = \frac{\mathcal{E}R_2}{R_1 + R_2}.$$

Answer: $\frac{\mathcal{E}R_2}{R_1 + R_2}$.