Answer on Question 61342, Physics, Electromagnetism

Question:

11) The current I in a conductor as a function of time t is given as $I(t)=5 t^{2}-3 t+$ 10 , where current is in ampres (A) and t is in seconds (s). What quantity of charge moves across a section through the conductor during the interval $t=2 s$ to $t=5 s$?
a) 154.4 C
b) 193.5 C
c) 225.5 C
d) 300.0 C

Solution:

Let's recall the definition of the current. The electric current is the rate at which the electric charge flows through the cross-sectional area of a conductor:

$$
I=\frac{\Delta Q}{\Delta t^{\prime}}
$$

here, ΔQ is the amount of charge that passes through the cross-sectional area of the conductor in a time interval Δt.

Let's write the definition of the electric current in the differential form:

$$
I=\frac{d Q}{d t}
$$

From this formula, we can find the quantity of charge moves across a section through the conductor during the interval from $t=2 \mathrm{~s}$ to $t=5 \mathrm{~s}$:

$$
d Q=I d t
$$

$$
\begin{aligned}
Q=\int_{2}^{5} I d t & =\int_{2}^{5}\left(5 t^{2}-3 t+10\right) d t= \\
& =\left.\left(\frac{5}{3} t^{3}-\frac{3}{2} t^{2}+10 t\right)\right|_{2} ^{5}=\frac{5}{3}(5)^{3}-\frac{3}{2}(5)^{2}+10 \cdot 5-\frac{5}{3}(2)^{3}+\frac{3}{2}(2)^{2} \\
& -10 \cdot 2=193.5 C .
\end{aligned}
$$

Answer: b) 193.5 C
12) A nichrome wire is 1.0 m long and $1.0 \mathrm{~mm}^{2}$ in cross-sectional area. It carries a current of 4.0 A when a potential difference of 2.0 V is applied between its ends. Calculate conductivity of the wire:
a) $2 M \Omega^{-1} \cdot m^{-1}$
b) $4 k \Omega^{-1} \cdot \mathrm{~m}^{-1}$
c) $2 m \Omega^{-1} \cdot m^{-1}$
d) $4 \Omega^{-1} \cdot \mathrm{~m}^{-1}$

Solution:

Conductivity is defined as the inverse of resistivity ρ :

$$
\sigma=\frac{1}{\rho}
$$

As we know, resistivity defined as:

$$
\rho=R \frac{A}{l},
$$

here, R is the resistance of the wire, A is the cross-sectional area of the wire and l is the length of the wire.

In order to find the resistance of the wire we use the Ohm's law and obtain:

$$
R=\frac{V}{I}
$$

Then, we can rewrite our formula for the resistivity:

$$
\rho=\frac{V}{I} \cdot \frac{A}{l}
$$

Substituting the resistivity into the formula for the conductivity we finally get:

$$
\sigma=\frac{1}{\rho}=\frac{I \cdot l}{V \cdot A}=\frac{4.0 A \cdot 1.0 \mathrm{~m}}{2.0 V \cdot 1.0 \cdot 10^{-6} \mathrm{~m}^{2}}=2.0 \cdot 10^{6} \Omega^{-1} \cdot \mathrm{~m}^{-1}=2.0 M \Omega^{-1} \cdot \mathrm{~m}^{-1}
$$

Answer:

a) $2 M \Omega^{-1} \cdot m^{-1}$

