Answer on question \#61338, Physics / Electromagnetism
Statement of a problem
5) A 0.40 mm diameter copper wire carries a current of
$3 \mu \mathrm{~A}$. Find the current density in the wire
a) $15.16 \mathrm{~A} / \mathrm{m} 2$
b) $33.32 \mathrm{~A} / \mathrm{m} 2$
c) $26.17 \mathrm{~A} / \mathrm{m} 2$
d) $23.87 \mathrm{~A} / \mathrm{m} 2$

Solution

5) $d=0.4 \mathrm{~mm}=4 \times 10^{-4} \mathrm{~m}$ - diameter of the copper wire;
$I=3 \mu \mathrm{~A}=3 \times 10^{-6} \mathrm{~A}-$ current;
$j-$? - current density;

$$
\begin{gathered}
j=\frac{I}{S}=\frac{I}{\pi d^{2} / 4}=\frac{4 I}{\pi d^{2}} \\
j \approx \frac{4 \times 3 \times 10^{-6} \mathrm{~A}}{3.142 \times\left(4 \times 10^{-4}\right)^{2} \mathrm{~m}^{2}} \approx \frac{12 \times 10^{-6} \mathrm{~A}}{5.027 \times 10^{-7} \mathrm{~m}^{2}}=23.87 \frac{\mathrm{~A}}{\mathrm{~m}^{2}}
\end{gathered}
$$

Answer: d) 23.87A/m2
6) Calculate the resistance of 180 m of silver wire having a cross section of
0.33 mm 2 . The resistivity of silver is $1.6 \times 10-8 \Omega \mathrm{~m}$
a) 11.2Ω
b) 9.6Ω
c) 14.6Ω
d) 7.5Ω

Solution

$l=180 \mathrm{~m}$-length of silver wire;
$\rho=1.6 \times 10^{-8} \Omega * \mathrm{~m}$-resistivity of silver;
$S=0.33 \mathrm{~mm}^{2}=3.3 \times 10^{-7} \mathrm{~m}^{2}$. -cross section of wire;
$R-$? - Resistance of wire;

$$
\begin{gathered}
R=\rho \frac{l}{S} \\
R=1.6 \times 10^{-8} \Omega * \mathrm{~m} \frac{180 \mathrm{~m}}{3.3 \times 10^{-7} \mathrm{~m}^{2}}=8.7 \Omega
\end{gathered}
$$

Answer: $R=8.7 \Omega$, any of variants are not suitable.

