Answer on Question \#61333-Physics-Electromagnetism

16 Which of the following correctly gives the electric field at the center of a uniformly charged semicircular arc of radius a and charge per unit length, λ ?
a) $\lambda 2 \pi \in 0 a$
b) $2 \lambda \pi \in 0 a$
c) $\lambda \pi \in 0 a 2$
d) $\lambda \pi \in O a$

Answer

The electric field at the center of a uniformly charged semicircular arc of radius is given by equation:

$$
E=\frac{\lambda}{2 \pi \epsilon_{0} \mathrm{a}}
$$

15) A uniform electric field of $E=200 \frac{N}{C}$ is in the x-direction. A point charge of $q=3 \mu C$ is released from rest at the origin. What is the kinetic energy of the charge when it is at $x=4 \mathrm{~m}$?
a) $2.4 \times 10-3 \mathrm{~J}$
b) $1.6 \times 10-3 \mathrm{~J}$
c) $3.6 \times 10-3 \mathrm{~J}$
d) $4.8 \times 10-3 \mathrm{~J}$

Solution

The kinetic energy of the charge is equal to the work done by uniform electric field on a point charge:

$$
K=W
$$

The work done by uniform electric field on a point charge is

$$
W=q E d
$$

Thus

$$
K=q E d=3 \cdot 10^{-6} C \cdot 200 \frac{N}{C}(4 m-0 m)=2.4 \cdot 10^{-3} \mathrm{~J}
$$

