Answer on question \#61328, Physics, Electromagnetism

7) What are the dimensions of the constant k in Coulomb's law of electrostatics?
a) $M L^{2} T^{-4} T^{-2} A^{-1}$
b) $M L^{2} T^{3} A^{-2}$
c) $M^{-2} L^{3} T^{2} A^{-1}$
d) $M L^{3} \mathrm{~T}^{-4} \mathrm{~A}^{-2}$

Solution:

Coulomb's law is

$$
F=k \frac{q_{1} q_{2}}{r^{2}}
$$

Therefore, k equals:

$$
k=\frac{F r^{2}}{q_{1} q_{2}}
$$

Dimension of force is N, dimension of distance is m, dimension of charge is C.
Dimension of N is

$$
\lceil N\rceil=\left\lceil\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}\right\rceil
$$

Dimension of C is

$$
\begin{gathered}
\lceil C\rceil=\lceil A \cdot s\rceil \\
\lceil k\rceil=\left\lceil\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \cdot \frac{\mathrm{~m}^{2}}{A^{2} \cdot \mathrm{~s}^{2}}\right\rceil=\left\lceil\frac{\mathrm{kgm}^{3}}{\mathrm{~s}^{4} A^{2}}\right\rceil=M L^{3} T^{-4} A^{-2}
\end{gathered}
$$

Answer: d) $\mathrm{ML}^{3} \mathrm{~T}^{-4} \mathrm{~A}^{-2}$
8) The two tiny balls shown in the figure have identical masses of 0.20 g each. When suspended from $50-\mathrm{m}$ long string, they make an angle of 37° to the vertical. If the charges on each ball are the same, how large is each charge? Click here to see exhibit
a) $0.48 \mu \mathrm{C}$
b) $0.36 \mu \mathrm{C}$
c) $0.24 \mu \mathrm{C}$
d) $0.62 \mu \mathrm{C}$

Solution:

The sum of the internal angles of a triangle is always 180°.
So,

$$
\begin{gathered}
\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
\angle \mathrm{B}=90^{\circ}, \angle \mathrm{C}=37^{\circ}, \angle \mathrm{A}=? \\
\angle \mathrm{~A}=180^{\circ}-90^{\circ}-37^{\circ}=53^{\circ}
\end{gathered}
$$

Angles $\angle \mathrm{BAC}$ and $\angle \mathrm{DAK}$, we can take as complementary angles. They form a right angle in the amount of 90°.

$$
\begin{aligned}
& \angle \mathrm{BAC}+\angle \mathrm{DAK}=90^{\circ} \\
& \angle \mathrm{DAK}=90^{\circ}-53^{\circ}=37^{\circ}
\end{aligned}
$$

Since the system is at rest, we can apply the conditions for equilibrium to the ball on the left. Three force act on the ball: its weight mg , the tension T in the string, and F, the repulsive forces due to the charge on the other ball.

With the triangle KDA find DK and DA

$$
\begin{gathered}
D K=A K \cdot \sin \angle D A K \\
A K=\mathrm{T}
\end{gathered}
$$

$$
\begin{gathered}
D K=T \sin 37^{\circ}=\mathbf{0 . 6 T} \\
D A=A K \cdot \sin \angle D K A \\
D A=T \sin 53^{\circ}=\mathbf{0 . 8 T}
\end{gathered}
$$

Conditions for equilibrium:

$$
\sum F_{x}=0
$$

Therefore,

$$
\begin{gathered}
F-0.6 T=0 \\
\sum F_{y}=0
\end{gathered}
$$

Which gives

$$
T=\frac{m g}{0.8}=\frac{0.8 T-m g=0}{0.2 \cdot 10^{-3} \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}} \begin{gathered}
0.8
\end{gathered}=2.45 \cdot 10^{-3} \mathrm{~N}
$$

Find F,

$$
F=0.6 \times 2.45 \cdot 10^{-3}=1.47 \cdot 10^{-3} \mathrm{~N}
$$

Coulomb's law is

$$
F=k \frac{q_{1} q_{2}}{r^{2}}
$$

Find $r / 2$, with the triangle $A C B(r / 2=A C)$

$$
\begin{gathered}
A C=A B \cdot \sin \angle A B C \\
A C=50 \mathrm{~cm} \sin 37^{\circ}=30 \mathrm{~cm} \\
\mathrm{r}=2 \cdot 30 \mathrm{~cm}=60 \mathrm{~cm}=0.6 \mathrm{~m} \\
1.47 \cdot 10^{-3}=9 \cdot 10^{9} \frac{q^{2}}{0.6^{2}} \\
q=\sqrt{\frac{1.47 \cdot 10^{-3} \times 0.6^{2}}{9 \cdot 10^{9}}}=2.4 \cdot 10^{-7} C=0.24 \mu C
\end{gathered}
$$

Answer: c) $0.24 \mu \mathrm{C}$

