Answer on Question #61327, Physics / Electromagnetism

5)A tiny ball of mass 0.60 g is suspended from a rigid support with a piece of thread in a horizontal electric field of intensity 700 N/C. The ball is in equilibrium when the thread is inclined at an angle of 20° to the vertical. What are the magnitude and sign of the charge on the ball? Take $g=9.8m/s^2$

a)
$$-3.1 \times 10^{-6}$$
C
b) 3.2×10^{-6} C
c) 4.2×10^{-6} C
d) -4.1×10^{-3}
Find: q - ?
Given:
m= 0.6×10^{-3} kg
E=700 N/C
 α =20°
g= 9.8 m/s²
Solution:

Consider the forces which acting on the tiny ball q.

Newton's Second Law:

$$\vec{F} = m\vec{a}$$
 (1)
Of (1) $\Rightarrow \vec{T} + m\vec{g} + \vec{f} = m\vec{a}$ (2),
where \vec{T} is tension force,
m \vec{g} is gravity,

 $\vec{f} \text{ is force of electric field}$ Projections of the vectors: $OX: -T \sin \alpha + f = 0 (3)$ $OY: T \cos \alpha - mg = 0 (4)$ Force of electric field: f = E|q| (5) $(5) \text{ in } (3): T \sin \alpha = E|q| (6)$ $Of (4) \Rightarrow T \cos \alpha = mg (7)$ We divide (6) on (7) term by term: $\tan \alpha = \frac{E|q|}{mg} (8)$ $Of (8) \Rightarrow |q| = \frac{mg \tan \alpha}{E} (9)$ $Of (9) \Rightarrow |q| = 3.1 \times 10^{-6} \text{C}$ From Figure \Rightarrow sign of the charge: q=-3.1×10⁻⁶ C Answer:

a)
$$-3.1 \times 10^{-6}$$
C

6) The following are true about electric field lines except that they

a) are drawn such that the magnitude of the field is proportional to the number of lines crossing a unit area perpendicular to the lines

b) do not intersect one another

c) are discontinuous and may terminate in a vacuum

d) give the direction of motion of a unit positive test-charge under the action of the electrostatic force

Answer:

c) are discontinuous and may terminate in a vacuum

http://www.AssignmentExpert.com