Answer on Question \#61327, Physics / Electromagnetism
5)A tiny ball of mass 0.60 g is suspended from a rigid support with a piece of thread in a horizontal electric field of intensity $700 \mathrm{~N} / \mathrm{C}$. The ball is in equilibrium when the thread is inclined at an angle of 20° to the vertical. What are the magnitude and sign of the charge on the ball? Take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
a) $-3.1 \times 10^{-6} \mathrm{C}$
b) $3.2 \times 10^{-6} \mathrm{C}$
c) $4.2 \times 10^{-6} \mathrm{C}$
d) -4.1×10^{-3}

Find: q - ?

Given:

$\mathrm{m}=0.6 \times 10^{-3} \mathrm{~kg}$
$E=700 \mathrm{~N} / \mathrm{C}$
$\alpha=20^{\circ}$
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Solution:

Consider the forces which acting on the tiny ball q .
Newton's Second Law:
$\vec{F}=m \vec{a}(1)$
Of $(1) \Rightarrow \overrightarrow{\mathrm{T}}+\mathrm{m} \overrightarrow{\mathrm{g}}+\overrightarrow{\mathrm{f}}=\mathrm{ma}(2)$,
where $\overrightarrow{\mathrm{T}}$ is tension force,
mg is gravity,
\vec{f} is force of electric field
Projections of the vectors:
OX: $-\mathrm{T} \sin \alpha+\mathrm{f}=0$ (3)
OY: $\mathrm{T} \cos \alpha-\mathrm{mg}=0$ (4)
Force of electric field:
$\mathrm{f}=\mathrm{E}|\mathrm{q}|$ (5)
(5) in (3): $T \sin \alpha=E|q|(6)$

Of (4) $\Rightarrow \mathrm{T} \cos \alpha=\mathrm{mg}$ (7)
We divide (6) on (7) term by term:
$\tan \alpha=\frac{\mathrm{E}|\mathrm{q}|}{\mathrm{mg}}$ (8)
Of (8) $\Rightarrow|q|=\frac{\mathrm{mg} \tan \alpha}{\mathrm{E}}$ (9)
Of (9) $\Rightarrow|q|=3.1 \times 10^{-6} \mathrm{C}$
From Figure \Rightarrow sign of the charge: $q=-3.1 \times 10^{-6} \mathrm{C}$

Answer:

a) $\quad-3.1 \times 10^{-6} \mathrm{C}$
6) The following are true about electric field lines except that they
a) are drawn such that the magnitude of the field is proportional to the number of lines crossing a unit area perpendicular to the lines
b) do not intersect one another
c) are discontinuous and may terminate in a vacuum
d) give the direction of motion of a unit positive test-charge under the action of the electrostatic force

Answer:

c) are discontinuous and may terminate in a vacuum

