Answer on question \#61316, Physics / Mechanics | Relativity

Two 25.0 N weights are suspended at opposite end of a rope that passes over a light, frictionless pulley. The pulley is attached to a chain that goes to the ceiling.
a. What is the tension in the rope?
b. What is the tension in the chain?

Solution:

The pulley has negligible mass. Let T_{r} be the tension in the rope and let T_{c} be the tension in the chain. $P=25.0 \mathrm{~N}$
a) The diagram for the weight is given here

Write Newton's second law in the vector form:

$$
\vec{F}=\overrightarrow{T_{r}}+\vec{P}
$$

The equation will look like in the projection on the axis of +Y :

$$
\begin{gathered}
m a=T_{r}-P(\text { where } a=0) \\
-T_{r}=-P(\text { multiplied by }-1) \\
T_{r}=P \\
T_{r}=25.0 \mathrm{~N}
\end{gathered}
$$

As the rope will be stationary (same weight on the other side), therefore tension in the rope will be 25.0 N .
b) The diagram for the pulley is given here

Write Newton's second law in the vector form:

$$
\vec{F}=\overrightarrow{T_{c}}+2 \vec{P}
$$

The equation will look like in the projection on the axis of $+Y$:

$$
\begin{gathered}
m a=T_{c}-2 P(\text { where } a=0) \\
-T_{c}=-2 P \\
T_{c}=2 P \\
T_{\mathrm{c}}=2 \times 25.0 \mathrm{~N}=50.0 \mathrm{~N}
\end{gathered}
$$

Therefore, tension in chain= 50.0 N .
Answer:
a) 25.0 N ;
b) 50.0 N

