Answer on Question \#61192, Physics / Mechanics | Relativity

A train travels between two stations $1 / 2$ mile apart in a minimum time of 41 sec . If the train accelerates and decelerates at $8 \mathrm{ft} / \mathrm{sec}^{\wedge} 2$, starting from rest at the first station and coming to a stop at the end of the station, what is its maximum speed in mph? how long does it travel at this top speed?

Solution:

The mile is an English unit of length of linear measure equal to 5,280 feet.
So, the halfway between two stations is

$$
d_{1}=\frac{1}{4} \text { mile }=\frac{5280 \mathrm{ft}}{4}=1320 \mathrm{ft}
$$

Let's say that the train takes t_{1} time to reach the max. speed v and then it travels at this top speed distance d_{2} at time t_{2}.

Use the kinematic equation

$$
d_{1}=\frac{a t_{1}^{2}}{2}+\frac{v t_{2}}{2}
$$

The time is

$$
t_{1}+\frac{t_{2}}{2}=\frac{t}{2}=\frac{41 \mathrm{~s}}{2}=20.5 \mathrm{~s}
$$

The equation for speed is

$$
v=a t_{1}
$$

Thus, substituting in first equation

$$
\begin{gathered}
d_{1}=\frac{a t_{1}^{2}}{2}+\frac{a t_{1} t_{2}}{2} \\
1320=\frac{8 t_{1}^{2}}{2}+\frac{8 t_{1}\left(41-2 t_{1}\right)}{2} \\
330=t_{1}^{2}+41 t_{1}-2 t_{1}^{2} \\
t_{1}^{2}-41 t_{1}+330=0 \\
\left(t_{1}-30\right)\left(t_{1}-11\right)=0
\end{gathered}
$$

The physical solution is

$$
t_{1}=11 \mathrm{~s}
$$

Hence,

$$
v=a t_{1}=8 \cdot 11=88 \mathrm{ft} / \mathrm{s}
$$

1 Foot per Second = 0.681818 Miles per Hour
Thus,

$$
v=88 \cdot 0.681818=60 \mathrm{mph}
$$

The distance that it travels at this top speed is

$$
d_{2}=v t_{2}=v\left(41-2 t_{1}\right)=88(41-22)=1672 \mathrm{ft}
$$

Answer: $60 \mathrm{mph} ; 1672 \mathrm{ft}$.

