Answer on Question #61147, Physics / Molecular Physics | Thermodynamics

A Carnot engine has an efficiency of 40%. Its efficiency is to be raised to 50%. By how much must the temperature of the source be increased if the sink is at 27 °C.

Find: $\Delta T - ?$

Given:

 $\eta_1 = 0.4$

 $\eta_2 = 0.5$

 $T_2 = 300 \text{ K}$

Solution:

Efficiency of Carnot engine:

$$\eta = \frac{T_1 - T_2}{T_1}$$
 (1),

where T₁ is the absolute temperature of the

heater, T₂ is the absolute temperature of the fridge

Of (1)
$$\Rightarrow \eta T_1 = T_1 - T_2$$
 (2)

Of (2)
$$\Rightarrow$$
 T₁(1 - η) = T₂ (3)

Of (3)
$$\Rightarrow$$
 $T_1 = \frac{T_2}{1-\eta}$ (4)

Of (4)
$$T_1' = \frac{T_2}{1-\eta_1}$$
 (5)

Of (5)
$$T_1' = 500 \text{ K}$$
 (6)

Of (4)
$$T_1'' = \frac{T_2}{1-\eta_2}$$
 (7)

Of (7)
$$T_1^{''} = 600 \text{ K (8)}$$

$$\Delta T = T_{1}^{''} - T_{1}^{'}$$
 (9)

(6) and (8) in (9):
$$\Delta T = 100 \text{ K}$$

Answer:

100 K (100 °C)