Answer on Question \#61147, Physics / Molecular Physics | Thermodynamics
A Carnot engine has an efficiency of 40%. Its efficiency is to be raised to 50%. By how much must the temperature of the source be increased if the sink is at $27^{\circ} \mathrm{C}$.

Find: $\Delta T-$?

Given:

$\eta_{1}=0.4$
$\eta_{2}=0.5$
$\mathrm{T}_{2}=300 \mathrm{~K}$

Solution:

Efficiency of Carnot engine:
$\eta=\frac{T_{1}-T_{2}}{T_{1}}(1)$,
where T_{1} is the absolute temperature of the
heater, T_{2} is the absolute temperature of the fridge
Of (1) $\Rightarrow \eta \mathrm{T}_{1}=\mathrm{T}_{1}-\mathrm{T}_{2}(2)$
Of $(2) \Rightarrow T_{1}(1-\eta)=T_{2}(3)$
Of $(3) \Rightarrow T_{1}=\frac{\mathrm{T}_{2}}{1-\eta}$
Of (4) $\quad \mathrm{T}_{1}^{\prime}=\frac{\mathrm{T}_{2}}{1-\eta_{1}}$ (5)
Of (5) $\quad \mathrm{T}_{1}^{\prime}=500 \mathrm{~K}(6)$
Of (4) $\quad T_{1}^{\prime \prime}=\frac{T_{2}}{1-\eta_{2}}(7)$
Of (7) $\quad \mathrm{T}_{1}^{\prime \prime}=600 \mathrm{~K}(8)$
$\Delta \mathrm{T}=\mathrm{T}_{1}^{\prime \prime}-\mathrm{T}_{1}^{\prime}$ (9)
(6) and (8) in (9): $\Delta T=100 \mathrm{~K}$

Answer:

$100 \mathrm{~K}\left(100{ }^{\circ} \mathrm{C}\right)$

