A white dwarf star has a mass of 10^{30} kg. Its luminosity is 10^{24} Js–1. Calculate how long it can survive with its present luminosity if its internal temperature is 10^7 K.

Solution. The amount of energy emitted will be equal to the amount of energy produced by fusion of hydrogen to helium over that lifetime. $E = mc^2$. Here *m* is the amount of matter that was converted into energy. Hence total energy of the star equal

$$E = Mc^{2} = 10^{30} kg \cdot \left(3 \cdot 10^{8} \frac{m}{s}\right)^{2} = 9 \cdot 10^{46} J.$$

Using luminosity definition we get lifetime for star $t = \frac{E}{L} = \frac{9 \cdot 10^{46}}{10^{24}} = 9 \cdot 10^{22} s \approx 2.85 \cdot 10^{15} year.$

Answer. $t = 9 \cdot 10^{22} s \approx 2.85 \cdot 10^{15} year.$

http://www.AssignmentExpert.com