Two charges are located on the x axis: $q 1=+6.0$ microcoulumbs at $\mathbf{x} 1=+4.0 \mathrm{~cm}$, and $q 2=+6.0$ microcoulumbs at $\times 2=-4.0 \mathrm{~cm}$. Two other charges are located on the y axis: $q 3=+3.0$ microcoulumbs at $y 3=+5.0 \mathrm{~cm}$, and $q 4=-8.0$ microcoulumbs at $y 4=+7.0 \mathrm{~cm}$. Find the net electric field (magnitude and direction) at the origin.

From the task we can see, that the charges of the points 1 and 2 is equal and situated symmetrically relative to Y -axis. It means that at the origin the net field of this 2 charges (1 and 2) is equal to 0 . So we will sum fields only from point 3 and 4:

$$
\begin{gathered}
E=k \frac{q_{3}}{y_{3}^{2}}+k \frac{q_{4}}{y_{4}^{2}} \\
E=9 * 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\left(\frac{3 * 10^{-6} \mathrm{C}}{\left(5 * 10^{-2} \mathrm{~m}\right)^{2}}+\frac{-8 * 10^{-6} \mathrm{C}}{\left(7 * 10^{-2} \mathrm{~m}\right)^{2}}\right)=-3.6 * 10^{6} \mathrm{~V} / \mathrm{m}
\end{gathered}
$$

Answer: So, electric field magnitude is equal to $|E|=3.6 * 10^{6} \mathrm{~V} / \mathrm{m}$, and direct against to the Y-axis

