Answer on Question #61054, Physics / Classical Mechanics

Let us denote initial velocity of first and second vehicle v_1, v_2 , and choose x direction so that $v_1 = 50 \frac{km}{h}$, $v_2 = -5 \frac{km}{h}$. Let the velocities after impact be v_1', v_2' . Using law of conservation of momentum, obtain $mv_1 + mv_2 = mv_1' + mv_2'$, from where $v_1' = 45 - v_2'$. Using law of conservation of energy, obtain $\frac{mv_1^2}{2} + \frac{mv_2^2}{2} = \frac{mv_1'^2}{2} + \frac{mv_2'^2}{2}$, from where $v_1^2 + v_2^2 = v_1'^2 + v_2'^2$. Substituting $v_1' = 45 - v_2'$ and numerical values of v_1, v_2 into last expression, obtain $v_2'^2 - 45v_2' - 250 = 0$. Solving quadratic equation, obtain $v_2' = 50$, and $v_1' = 45 - v_2' = -5$, hence the first car will be moving back with velocity $5 \frac{km}{h}$ and the second car will be moving forward with velocity $50 \frac{km}{h}$.

http://www.AssignmentExpert.com