Answer on Question \#61054, Physics / Classical Mechanics

Let us denote initial velocity of first and second vehicle v_{1}, v_{2}, and choose x direction so that $v_{1}=$ $50 \frac{\mathrm{~km}}{\mathrm{~h}}, v_{2}=-5 \frac{\mathrm{~km}}{\mathrm{~h}}$. Let the velocities after impact be $v_{1}{ }^{\prime}, v_{2}{ }^{\prime}$.
Using law of conservation of momentum, obtain $m v_{1}+m v_{2}=m v_{1}{ }^{\prime}+m v_{2}{ }^{\prime}$, from where $v_{1}{ }^{\prime}=$ $45-v_{2}{ }^{\prime}$. Using law of conservation of energy, obtain $\frac{m v_{1}^{2}}{2}+\frac{m v_{2}^{2}}{2}=\frac{m v_{1}{ }^{2}}{2}+\frac{m v_{2}{ }^{\prime 2}}{2}$, from where $v_{1}^{2}+$ $v_{2}^{2}=v_{1}^{\prime 2}+v_{2}^{\prime 2}$. Substituting $v_{1}^{\prime}=45-v_{2}^{\prime}$ and numerical values of v_{1}, v_{2} into last expression, obtain $v_{2}{ }^{\prime 2}-45 v_{2}{ }^{\prime}-250=0$. Solving quadratic equation, obtain $v_{2}{ }^{\prime}=50$, and $v_{1}{ }^{\prime}=45-$ $v_{2}{ }^{\prime}=-5$, hence the first car will be moving back with velocity $5 \frac{\mathrm{~km}}{\mathrm{~h}}$ and the second car will be moving forward with velocity $50 \frac{\mathrm{~km}}{\mathrm{~h}}$.

