Answer on Question 60979, Physics, Other

Question:

A spring of negligible mass has force constant $k=1600 \mathrm{~N} / \mathrm{m}$.
a) How far must the spring be compressed for 3.2 J of potential energy to be stored in it?
b) You place the spring vertically with one end on the floor. You then drop a 1.2 kg book onto it from a height of 0.8 m above the top of the spring. Find the maximum distance the spring will be compressed.

Solution:

a) We can find the compression of the spring from the formula for the potential energy stored in the spring:

$$
P E_{\text {spring }}=\frac{1}{2} k(\Delta x)^{2},
$$

here, k is the force constant, Δx is the compression of the spring.
From this formula we can find the compression of the spring, Δx :

$$
\Delta x=\sqrt{\frac{2 P E_{\text {spring }}}{k}}=\sqrt{\frac{2 \cdot 3.2 \mathrm{~J}}{1600 \frac{\mathrm{~N}}{\mathrm{~m}}}}=0.063 \mathrm{~m}=6.3 \mathrm{~cm} .
$$

b) Let's use the Law of Conservation of Energy (the energy of the book that transfers to the spring is the change in the gravitational potential energy of the book):

$$
\begin{aligned}
& P E_{\text {spring (initial) })}+P E_{\text {gravitational (initial })}= \\
& \quad=P E_{\text {spring }(\text { final })}+P E_{\text {gravitational (final })} .
\end{aligned}
$$

Initially, the spring is uncompressed, so $P E_{\text {spring (initial) }}=0 \mathrm{~J}$. Thus, we get:

$$
P E_{\text {spring (final) }}=P E_{\text {gravitational (initial) }}-P E_{\text {gravitational (final) }},
$$

here, $P E_{\text {spring (final) }}$ is the final potential energy that is stored in the spring when the book was fall onto it, $P E_{\text {gravitational (initial) }}$ is the initial gravitational energy of the
book at the height $h, P E_{\text {gravitational (final) }}$ is the final gravitational energy of the book when the spring is compressed by the maximum distance Δx.

Then, we can write:

$$
\begin{aligned}
& \frac{1}{2} k(\Delta x)^{2}=m g h-m g(-\Delta x), \\
& \frac{1}{2} k(\Delta x)^{2}-m g \Delta x-m g h=0 .
\end{aligned}
$$

As we can see, we obtain the quadratic equation. Let's substitute the numbers:

$$
800(\Delta x)^{2}-11.76 \Delta x-9.408=0
$$

This quadratic equation has two roots:

$$
\begin{aligned}
& \Delta x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}=\frac{11.76+\sqrt{(-11.76)^{2}-4 \cdot 800 \cdot(-9.408)}}{2 \cdot 800}=0.116 . \\
& \Delta x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{11.76-\sqrt{(-11.76)^{2}-4 \cdot 800 \cdot(-9.408)}}{2 \cdot 800}=-0.101 .
\end{aligned}
$$

The maximum distance can't be negative, so the correct answer will be:

$$
\Delta x=0.116 \mathrm{~m} \approx 0.12 \mathrm{~m}=12 \mathrm{~cm} .
$$

Answer:
a) $\Delta x=6.3 \mathrm{~cm}$.
b) $\Delta x=12 \mathrm{~cm}$.

