Question:

A point object traverses half the distance with velocity v 0 . The remaining part of the distance was covered with velocity v 1 for the half time and with velocity v 2 for the rest half. Find the average velocity?

Solution:

		$\frac{l}{2}$	
	$V_{0}, \frac{l}{2}, t$	V_{1}, t_{1}	V_{2}, t_{1}

The average speed is: $V=\frac{l}{t_{\text {sum }}}$
$\frac{l}{2}=V_{1} \cdot t_{1}+V_{2} \cdot t_{1}=V_{0} \cdot t \Rightarrow t=\frac{\left(V_{1}+V_{2}\right) t_{1}}{V_{0}}, l=2\left(V_{1}+V_{2}\right) t_{1}$
$t_{\text {sum }}=2 t_{1}+t=2 t_{1}+\frac{\left(V_{1}+V_{2}\right) t_{1}}{V_{0}}=t_{1}\left(2+\frac{V_{1}+V_{2}}{V_{0}}\right)$
And now we have:
$V=\frac{l}{t_{\text {sum }}}=\frac{2\left(V_{1}+V_{2}\right) t_{1}}{t_{1}\left(2+\frac{V_{1}+V_{2}}{V_{0}}\right)}=\frac{2\left(V_{1}+V_{2}\right)}{2+\frac{V_{1}+V_{2}}{V_{0}}}=\frac{2 V_{0}\left(V_{1}+V_{2}\right)}{2 V_{0}+V_{1}+V_{2}}$
Answer: $V=\frac{2 V_{0}\left(V_{1}+V_{2}\right)}{2 V_{0}+V_{1}+V_{2}}$

