
 

 

Answer on question 60941 

The one-dimensional time-independent Schrödinger equation is 

. 

a/ A particle of mass m is contained in a one-dimensional box of width a. The potential energy U(x) 

is infinite at the walls of the box (x = 0 and x = a) and zero in between (0 < x < a). 

Show that the solutions have the form: U(x)=Csin(n.pi.x/a) . Find the constant C. 

b/ For the case n = 3, find the probability that the particle will be located in the region a/3 <x< 

2a/3 

c/ Sketch the wave-functions and the corresponding probability density distributions for the cases 

n = 1, 2 and 3. 

Solution  
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a) Let check that the solutions have the form: 

𝜑𝑛(𝑥) = 𝐶𝑛 sin (
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𝑎
) 

The particle can be located only between two wall (due to infinity of potential outside). So 

we have additional condition 𝜑𝑛(0) = 𝜑𝑛(𝑎) = 0. 

Using (*) we write: 
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𝜑𝑛(𝑥) = 𝐸𝜑(𝑥) 

As we can from the last, the solutions have the needed form. 

For finding 𝐶𝑛 we use the condition: 
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c) (for scetching we take a=1) 
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