Answer on question 60941

The one-dimensional time-independent Schrödinger equation is
a/ A particle of mass m is contained in a one-dimensional box of width a. The potential energy $U(x)$ is infinite at the walls of the box ($x=0$ and $x=a$) and zero in between ($0<x<a$).
Show that the solutions have the form: $U(x)=C \sin (n . p i . x / a)$. Find the constant C.
$b /$ For the case $n=3$, find the probability that the particle will be located in the region $a / 3<x<$
2a/3
c/ Sketch the wave-functions and the corresponding probability density distributions for the cases $\mathrm{n}=1,2$ and 3 .

Solution

$$
\begin{equation*}
\left(\frac{-h^{2}}{2 m} \frac{d^{2}}{d x^{2}}+U(x)\right) \varphi(x)=E \varphi(x) \tag{*}
\end{equation*}
$$

a) Let check that the solutions have the form:

$$
\varphi_{n}(x)=C_{n} \sin \left(\frac{n \pi x}{a}\right)
$$

The particle can be located only between two wall (due to infinity of potential outside). So we have additional condition $\varphi_{n}(0)=\varphi_{n}(a)=0$.
Using (${ }^{*}$) we write:

$$
\frac{-h^{2}}{2 m} \frac{d^{2}}{d x^{2}} C_{n} \sin \left(\frac{n \pi x}{a}\right)=\frac{h^{2}}{2 m}\left(\frac{\pi n}{a}\right)^{2} \varphi_{n}(x)=E \varphi(x)
$$

As we can from the last, the solutions have the needed form.
For finding C_{n} we use the condition:

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|\varphi_{n}(x)\right|^{2} d x & =1 \rightarrow C_{n}^{2} \int_{-a}^{a}\left|\sin \left(\frac{n \pi x}{a}\right)\right|^{2} d x=\frac{C_{n}^{2}}{2} \int_{-a}^{a}\left(1-\cos \left(\frac{2 n \pi x}{a}\right)\right) d x=a C_{n}^{2} \\
\rightarrow C_{n} & =\frac{\mathbf{1}}{\sqrt{\boldsymbol{a}}}
\end{aligned}
$$

b) $P\left(x \in\left[\frac{a}{3} ; \frac{2 a}{3}\right]\right)=\int_{\frac{a}{3}}^{\frac{2 a}{3}}\left|\varphi_{3}(x)\right|^{2} d x=\frac{1}{a} \int_{\frac{a}{3}}^{\frac{2 a}{3}}\left|\sin \left(\frac{3 \pi x}{a}\right)\right|^{2} d x=\frac{1}{2 a} \int_{\frac{a}{3}}^{\frac{2 a}{3}}\left(1-\cos \left(\frac{6 \pi x}{a}\right)\right) d x=\frac{1}{6}$
c) (for scetching we take $a=1$)

https://www.AssignmentExpert.com

