Question \#60869, Physics / Classical Mechanics | for completion

a 60m ladder weighing 100N rests against a wall at a point 48 degree north above the ground. the center of gravity of the ladder is $1 / 3$ the way up. a 160 N man climbs halfway up the ladder assuming that the wall is friction less. find the reaction on the wall and the frictional force.

L=60 m
$\mathrm{F}_{1}=100 \mathrm{~N}$
$\alpha=48^{\circ}$
$\mathrm{F}_{\mathrm{m}}=160 \mathrm{~N}$
$\mathrm{N}_{\mathrm{a}}-$? F_{fr}-?

Solution:

On the basis of the vanishing of the sum of the moments of all forces about the axis passing through the point B, we form the equation:
$N_{A} L \sin \alpha-F_{m} \frac{L}{2} \cos \alpha-F_{l} \frac{L}{3} \cos \alpha=0$
$N_{A} L \sin \alpha=L \cos \alpha\left(\frac{F_{m}}{2}-\frac{F_{l}}{3}\right)$

$$
N_{A}=\operatorname{tg} \alpha\left(\frac{F_{m}}{2}-\frac{F_{l}}{3}\right)
$$

$N_{A}=\operatorname{tg} 48^{0}\left(\frac{160 N}{2}-\frac{100 N}{3}\right) \approx 51,83 N-$ the reaction force of the wall
As the ladder is fixed, then the equality of forces:
$N_{A}=F_{f r}=51,83 \mathrm{~N}$ - the frictional force

Answer the questions:

$N_{A}=51,83 N$.
$N_{A}=F_{f r}=51,83 \mathrm{~N}$

