Answer on Question \#60843, Physics - Molecular Physics | Thermodynamics

A student wants to cool 0.25 kg of Coke drink (mostly water), initially $25^{\circ} \mathrm{C}$, by adding ice initially at $-20^{\circ} \mathrm{C}$. How much ice should be added so that the final temperature will be $0^{\circ} \mathrm{C}$ with all the ice melted if the heat capacity of the container may be neglected.

Solution:

Specific heat capacity, ice: $\mathrm{c}_{\text {ice }}=2.108 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Specific heat capacity, water: $\mathrm{c}_{\text {water }}=4.187 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
The heat of fusion (or specific enthalpy of fusion) of ice is $L=334 \mathrm{~kJ} / \mathrm{kg}$.

After mixing, the hot liquid has cooled to a temperature $\mathrm{Tc}=0^{\circ} \mathrm{C}$.
The quantity of heat from first liquid:

$$
Q_{1}=c_{\text {water }} m_{\text {water }}\left(T_{1}-T_{c}\right)
$$

The energy to heat up the ice is the sum of the following

$$
Q=c_{i c e} m_{i c e}\left(T_{C}-T_{2}\right)+L m_{i c e}
$$

Since heat does not disappear, and transferred from one liquid to another:

$$
\begin{gathered}
Q_{1}=Q_{2} \\
c_{\text {water }} m_{\text {water }}\left(T_{1}-T_{c}\right)=c_{\text {ice }} m_{i c e}\left(T_{C}-T_{2}\right)+L m_{i c e}
\end{gathered}
$$

Thus,

$$
\begin{gathered}
m_{\text {ice }}=\frac{c_{\text {water }} m_{\text {water }}\left(T_{1}-T_{c}\right)}{c_{\text {ice }}\left(T_{C}-T_{2}\right)+L} \\
m_{\text {ice }}=\frac{4187 \cdot 0.25 \cdot(25-0)}{2108 \cdot(0+20)+334000}=0.0696 \mathrm{~kg} \approx 0.07 \mathrm{~kg}
\end{gathered}
$$

Answer:

