Answer on Question 60786, Physics, Atomic and Nuclear Physics

Question:

The half-life of radon is 3.82 days. How long will it take for 60 percent of a sample of radon to decay?

Solution:

Let's use the famous equation for the radioactive decay:

$$
N=N_{0} e^{-\lambda t},
$$

here, N_{0} is the amount of radon at time $t=0(100 \%), N$ is the amount of radon when 60% of it is decayed ($N=40 \%$), $\lambda=0.693 / T_{1 / 2}$ is the radioactive decay constant, $T_{1 / 2}=3.82$ days is the half-life of radon, t is the elapsed time which we are searching for.

Then, we get:

$$
\begin{aligned}
\frac{N}{N_{0}} & =e^{-\lambda t}, \\
\ln \left(\frac{N}{N_{0}}\right) & =\ln \left(e^{-\lambda t}\right), \\
\ln \left(\frac{N}{N_{0}}\right) & =-\frac{0.693}{T_{1 / 2}} t .
\end{aligned}
$$

From the last formula we can find the time needed for 60 percent of a sample of radon to decay:

$$
t=\left[\frac{\ln \left(\frac{N}{N_{0}}\right)}{(-0.693)}\right] T_{1 / 2}=\left[\frac{\ln (0.4)}{(-0.693)}\right] \cdot 3.82 \text { days }=5.05 \text { days } .
$$

Answer:

$t=5.05$ days.

