Answer on Question \#60712, Physics / Other

Two spacecrafts A and B approach the moon from opposite directions with speeds of 2.2×10^{8} ms^{-1} and $2.5 \times 10^{8} \mathrm{~ms}^{-1}$, respectively, as measured by an observer on the moon. Calculate the speed of A with which it approaches the moon as observed by an observer in B.

Solution:

The Lorentz velocity transformation:

$$
u_{x}^{\prime}=\frac{u_{x}-v}{1-u_{x} v / c^{2}}
$$

where u_{x} is the velocity of an object measured in the S frame, $u^{\prime}{ }_{x}$ is the velocity of the object measured in the S^{\prime} frame and v is the velocity of the S^{\prime} frame along the x axis of S.

We take the S frame to be attached to the moon and the S^{\prime} frame to be attached to spacecraft B moving with velocity $v=-2.5 \times 10^{8} \mathrm{~ms}^{-1}$ along the x axis. Spacecraft A has velocity $u_{x}=2.2 \times 10^{8}$ ms^{-1} in S .

It follows from first equation that spacecraft A has velocity

$$
u_{x}^{\prime}=\frac{2.2 \cdot 10^{8}+2.5 \cdot 10^{8}}{1+2.2 \cdot 10^{8} \cdot 2.5 \cdot 10^{8} /\left(3 \cdot 10^{8}\right)^{2}}=2.92 \cdot 10^{8} \mathrm{~m} / \mathrm{s}
$$

Answer: Spacecraft A moves with velocity $2.92 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ as measured by an observer in spacecraft B

