Question \#60703, Physics - Mechanics | Relativity

Toss a ball upward with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. Neglecting air resistance, the time it takes to reach its release point is about.
(a) 4 s (b) 1 s (c) 3 s (d) 2 s

Solution

The equation of uniformly accelerated motion of the body thrown up:
$0=v_{0}-g t$
Where \boldsymbol{t} - the time ascent to the max height
$v_{0}=g t$
$t=\frac{v_{0}}{g}$
$t=\frac{10 \mathrm{~m} / \mathrm{s}}{9,8 \mathrm{~m} / \mathrm{s}^{2}} \approx 1 \mathrm{~s}$
Since the acceleration is constant, the time during which the body rises equal to the time of its descent.

Scilicet T=2s

Answer the questions:

The time it takes to reach its release point is about (d) $2 \mathbf{s}$.

