Answer on Question 60642, Physics, Other

Question:

Circuit consists of a 1Ω resistor in series with a parallel arrangement of 6Ω and 3Ω resistors. Calculate the total resistance of the circuit.

Solution:

Here's the sketch of our task:

We have a $R_{1}=1 \Omega$ resistor in series with a parallel arrangement of $R_{2}=6 \Omega$ and $R_{3}=3 \Omega$ resistors. Our task is to find the total resistance of the circuit.

Let's first find the total resistance of the combination of resistors $R_{2}=6 \Omega$ and $R_{3}=$ 3Ω that connected in parallel:

$$
R_{23(\|)}=\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{3}}}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{6 \Omega \cdot 3 \Omega}{6 \Omega+3 \Omega}=2 \Omega .
$$

Then, from our sketch we can see that R_{1} and $R_{23(\|)}$ are connected in series. Therefore, the total resistance of the circuit will be:

$$
R_{T}=R_{1}+R_{23(\|)}=1 \Omega+2 \Omega=3 \Omega .
$$

Answer:

$R_{T}=3 \Omega$.

