


Answer on Question 60642, Physics, Other

Question:

Circuit consists of a 1Ω resistor in series with a parallel arrangement of 6Ω and 3Ω resistors. Calculate the total resistance of the circuit.

Solution:

Here's the sketch of our task:

We have a $R_1 = 1 \Omega$ resistor in series with a parallel arrangement of $R_2 = 6 \Omega$ and $R_3 = 3 \Omega$ resistors. Our task is to find the total resistance of the circuit.

Let's first find the total resistance of the combination of resistors $R_2 = 6 \Omega$ and $R_3 = 3 \Omega$ that connected in parallel:

$$R_{23(\parallel)} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}} = \frac{R_2 R_3}{R_2 + R_3} = \frac{6 \Omega \cdot 3 \Omega}{6 \Omega + 3 \Omega} = 2 \Omega.$$

Then, from our sketch we can see that R_1 and $R_{23(\parallel)}$ are connected in series. Therefore, the total resistance of the circuit will be:

$$R_T = R_1 + R_{23(\parallel)} = 1 \Omega + 2 \Omega = 3 \Omega.$$

Answer:

$$R_T = 3 \Omega.$$