Answer on Question \#60612 - Physics - Electric Circuits

What is the minimum resistance which can be made by using five resistors of 250 ohms each
Solution. It is obvious that the parallel connection of conductors has a smaller series resistance. Consider the different connections of conductors and find the final resistance Consider the different connections of conductors and find the final resistance

$$
\frac{1}{R^{\prime}}=\frac{1}{R}+\frac{1}{R}+\frac{1}{R}+\frac{1}{R}+\frac{1}{R} \rightarrow R^{\prime}=5 \text { ohms }
$$

$$
\frac{1}{R^{\prime}}=\frac{1}{R}+\frac{1}{4 R} \rightarrow R^{\prime}=\frac{4}{5} R=20 \text { ohms }
$$

$$
\frac{1}{R^{\prime}}=\frac{1}{\frac{5}{2} R}+\frac{1}{R} \xrightarrow{R^{\prime}=\frac{5}{7} R=\frac{125}{7} \text { ohms }}
$$

$$
\frac{1}{R^{\prime}}=\frac{1}{\frac{4}{3} R}+\frac{1}{R} \xrightarrow[\rightarrow]{R^{\prime}=\frac{4}{7} R=\frac{100}{7} \text { ohms }}
$$

$$
\frac{1}{R^{\prime}}=\frac{1}{3 R}+\frac{1}{2 R} \rightarrow R^{\prime}=\frac{6}{5} R=30
$$

$$
\frac{1}{R^{\prime}}=\frac{1}{3 R}+\frac{1}{\frac{1}{2} R} \rightarrow R^{\prime}=\frac{3}{7} R=\frac{75}{7} \text { ohms }
$$

$$
\frac{1}{R^{\prime}}=\frac{1}{2 R}+\frac{1}{\frac{3}{2} R} \rightarrow R^{\prime}=\frac{6}{7} R=\frac{150}{7} \text { ohms }
$$

$$
\frac{1}{R^{\prime}}=\frac{1}{2 R}+\frac{1}{\frac{1}{3} R} \rightarrow R^{\prime}=\frac{2}{7} R=\frac{50}{7} \text { ohms }
$$

$$
\frac{1}{R^{\prime}}=\frac{1}{\frac{1}{2} R}+\frac{1}{\frac{3}{2} R} \quad R^{\prime}=\frac{3}{8} R=\frac{75}{8} \text { ohms }
$$

Hence the minimum resistance which can be made by using five resistors of 250 hms each equal 5 ohms.

Answer: Minimum resistance 5ohms.

