Answer on Question \#60590, Physics / Mechanics | Relativity

A ball bearing of mass $m=50.0 \mathrm{~g}$, is sitting on a vertical spring whose force constant is $120.0 \mathrm{~N} / \mathrm{m}$. The initial position of the spring is at $\mathrm{y}=0 \mathrm{~m}$. The spring is compressed downward a distance $x=0.200 \mathrm{~m}$. From the compressed position, how high will the ball bearing rise? How high does the ball bearing rise above the equilibrium position at $\mathrm{y}=0 \mathrm{~m}$?

Solution:

Assume frictionless system and massless spring
The potential energy of ball is

$$
P E=m g h
$$

The potential energy of spring is

$$
P S=1 / 2 k x^{2}
$$

The kinetic energy of ball is

$$
K E=1 / 2 m v^{2}
$$

A) I assume the question is how high the ball will rise if the spring were released after compression of 0.200 m

$$
\begin{gathered}
P S=1 / 2 k x^{2} \\
P S=\frac{1}{2} \cdot 120 \cdot(0.2)^{2}=2.4 \mathrm{~J}
\end{gathered}
$$

What height would give a 50 g ball a potential energy of 2.4 J ?

$$
\begin{gathered}
P E=P S \\
P E=m g h \\
h=\frac{P E}{m g}=\frac{2.4}{0.05 \cdot 9.8} \approx 4.90 \mathrm{~m}
\end{gathered}
$$

The second question asks how far from our origin of uncompressed spring so we need to subtract the distance of spring compression.

$$
h_{0}=4.9-0.2=4.7 \mathrm{~m}
$$

Answer: $4.90 \mathrm{~m} ; 4.7 \mathrm{~m}$.

