

Answer on Question #60584, Physics – Electric Circuits

Obtain an expression for the frequency at which charge oscillates in an LC circuit.

Solution:

(a)

Let us consider some arbitrary time t after the switch is closed, so that the capacitor has a charge $Q < Q_{\max}$ and the current is $I < I_{\max}$. At this time, both elements store energy, but the sum of the two energies must equal the total initial energy U stored in the fully charged capacitor at $t=0$:

$$U = U_C + U_L = \frac{q^2}{2C} + \frac{LI^2}{2}$$

Because we have assumed the circuit resistance to be zero, no energy is transformed to internal energy, and hence the total energy must remain constant in time.

This means that $dU/dt = 0$.

Therefore, by differentiating Equation 1 with respect to time while noting that q and I vary with time, we obtain

$$\frac{dU}{dt} = \frac{d}{dt} \left(\frac{q^2}{2C} + \frac{LI^2}{2} \right) = \frac{q}{C} \frac{dq}{dt} + LI \frac{dI}{dt} = 0$$

We can reduce this to a differential equation in one variable by remembering that the current in the circuit is equal to the rate at which the charge on the capacitor changes: $I = dq/dt$. From this, it follows that $\frac{dI}{dt} = \frac{d^2q}{dt^2}$. Substitution of these relationships into Equation 2 gives

$$\frac{q}{C} + L \frac{d^2q}{dt^2} = 0$$

$$\frac{d^2q}{dt^2} = -\frac{1}{LC}q$$

The solution of this equation has the general form

$$q = q_{\max} \cos(\omega t + \varphi)$$

where q_{\max} is the maximum charge of the capacitor and the angular frequency ω is

To pop it back into the differential equation and see what happens

$$\frac{d^2}{dt^2} (q_{\max} \cos(\omega t + \varphi)) = -\frac{1}{LC} q_{\max} \cos(\omega t + \varphi)$$

$$-\omega^2 q_{max} \cos(\omega t + \varphi) = -\frac{1}{LC} q_{max} \cos(\omega t + \varphi)$$

Basically everything cancels but one parameter — angular frequency

$$\omega = \sqrt{\frac{1}{LC}}$$

An LC circuit is therefore an oscillating circuit. The frequency of such a circuit (as opposed to its angular frequency) is given by

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi\sqrt{LC}}$$

<https://www.AssignmentExpert.com>