Answer to the Question\#60478-Physics-Molecular Physics and Thermodynamics

Task:

Find difference between the mean square speeds of hydrogen and oxygen molecules at N.T.P. Take molecular weight of hydrogen and oxygen as 2 and 32.

Solution:

NTP: Temperature $T=273 \mathrm{~K}$;
Molar masses: $\mu_{\mathrm{H}_{2}}=0.002 \mathrm{~kg} / \mathrm{mol} ; \mu_{O_{2}}=0.032 \mathrm{~kg} / \mathrm{mol}$;
Root-Mean-Square speed: $V=\sqrt{\frac{3 R T}{\mu}}$
For Hydrogen: $V_{H_{2}}=\sqrt{\frac{3 R T}{\mu_{H_{2}}}}$; For Oxygen: $V_{O_{2}}=\sqrt{\frac{3 R T}{\mu_{O_{2}}}}$;
Difference: $V_{H_{2}}-V_{O_{2}}=\sqrt{\frac{3 R T}{\mu_{H_{2}}}}-\sqrt{\frac{3 R T}{\mu_{O_{2}}}}=\sqrt{3 R T}\left(\frac{1}{\sqrt{\mu_{H_{2}}}}-\frac{1}{\sqrt{\mu_{O_{2}}}}\right)=\sqrt{3 * 8.31 * 273} *$
$\left(\frac{1}{\sqrt{0.002}}-\frac{1}{\sqrt{0.0032}}\right) \approx 1384 \mathrm{~m} / \mathrm{s} \approx 1.4 \mathrm{~km} / \mathrm{s}$
Answer: The difference between RMS speeds of Hydrogen and Oxygen is approximately equal to $1.4 \mathrm{~km} / \mathrm{s}$

