Answer on Question \#60463, Physics / Optics
A plane e.m. wave is incident normally on an interface. Obtain expressions for reflection and transmission coefficients.

Solution:

Fresnel formulas
The reflectance coefficient for s-polarized light:
$\mathrm{r}_{\mathrm{s}}=\frac{\mathrm{n}_{1} \cos \theta_{\mathrm{i}}-\mathrm{n}_{2} \cos \theta_{\mathrm{t}}}{\mathrm{n}_{1} \cos \theta_{\mathrm{i}}+\mathrm{n}_{2} \cos \theta_{\mathrm{t}}}(1)$,
where n_{1} - absolute refractive index of light by the first environment,
n_{2} - absolute refractive index of light by the second environment,
θ_{i} - angle of inddence,
θ_{t} - angle of refraction
The reflectance coefficient for p-polarized light:
$\mathrm{r}_{\mathrm{p}}=\frac{\mathrm{n}_{2} \cos \theta_{\mathrm{i}}-\mathrm{n}_{1} \cos \theta_{\mathrm{t}}}{\mathrm{n}_{2} \cos \theta_{\mathrm{i}}+\mathrm{n}_{1} \cos \theta_{\mathrm{t}}}(2)$
Normal drop of wave:
$\theta_{\mathrm{i}}=0^{\circ}(3)$
$\theta_{\mathrm{t}}=0^{\circ}(4)$
(3) and (4) in (1): $r_{s}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}}$ (5)
(3) and (4) in (2): $r_{p}=\frac{n_{2}-n_{1}}{n_{2}+n_{1}}(6)$

The transmission coefficient for s-polarized light:
$\mathrm{t}_{\mathrm{s}}=\frac{2 \mathrm{n}_{1} \cos \theta_{\mathrm{i}}}{\mathrm{n}_{1} \cos \theta_{\mathrm{i}}+\mathrm{n}_{2} \cos \theta_{\mathrm{t}}}(7)$
(3) and (4) in (7): $\mathrm{t}_{\mathrm{s}}=\frac{2 \mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$ (8)

The transmission coefficient for p-polarized light:
$\mathrm{t}_{\mathrm{p}}=\frac{2 \mathrm{n}_{1} \cos \theta_{\mathrm{i}}}{\mathrm{n}_{2} \cos \theta_{\mathrm{i}}+\mathrm{n}_{1} \cos \theta_{\mathrm{t}}}$ (9)
(3) and (4) in (9): $\mathrm{t}_{\mathrm{p}}=\frac{2 \mathrm{n}_{1}}{\mathrm{n}_{2}+\mathrm{n}_{1}}$ (10)

Answer:

reflectance coefficients:
$\mathrm{r}_{\mathrm{s}}=\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}\left(\mathrm{r}_{\mathrm{s}}=-\frac{\mathrm{n}-1}{\mathrm{n}+1}\right.$, where $\left.\mathrm{n}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}\right)$
$\mathrm{r}_{\mathrm{p}}=\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}}\left(\mathrm{r}_{\mathrm{p}}=\frac{\mathrm{n}-1}{\mathrm{n}+1}\right.$, where $\left.\mathrm{n}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}\right)$
transmission coefficient
$\mathrm{t}_{\mathrm{s}}=\frac{2 \mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}}\left(\mathrm{t}_{\mathrm{s}}=\frac{2}{\mathrm{n}+1^{\prime}}\right.$, where $\mathrm{n}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$)

$$
t_{p}=\frac{2 n_{1}}{n_{2}+n_{1}}\left(t_{p}=\frac{2}{n+1}, \text { where } n=\frac{n_{2}}{n_{1}}\right)
$$

https://www.AssignmentExpert.com

