Question \#60405, Physics / Other

Ques1. A body thrown vertically upward and returns back to the thrower after 6 seconds. Find- 1.velocity with which the body is thrown. 2.distance and
displacement of the body after- (a) $1 \mathrm{sec}(\mathrm{b}) 2 \mathrm{sec}(c) 3 \mathrm{sec}(\mathrm{d}) 4 \mathrm{sec}(\mathrm{e}) 5 \mathrm{sec}(\mathrm{f}) 6 \mathrm{sec} 3$. Using given data plot- (a) distance time graph (b) displacement time graph (c) speed time graph (d) velocity time graph (e) acceleration time graph 4. Can a body have zero velocity while moving with uniform acceleration. Explain with graph.

Solution

The vertical position of the body relatively to the thrower:

$$
y=v_{0} t-\frac{g t^{2}}{2}
$$

When the body returns to the thrower, $t=6$ and $y=0$:

$$
\begin{aligned}
& 6 v_{0}-18 g=0 \\
& v_{0}=3 g \\
& v_{0}=29.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Plugging the initial velocity into the original equation:

$$
y=29.4 t-4.9 t^{2}
$$

Plugging t values and calculating y :

t	1	2	3	4	5	6
y	24.5	39.2	44.1	39.2	24.5	0

Distance-time graph:

Displacement-time graph:

The velocity is the first derivative from displacement:

$$
y^{\prime}=29.4-9.8 t
$$

Speed is the absolute value of the velocity:

$$
y^{\prime}=|29.4-9.8 t|
$$

The acceleration is the free fall acceleration: $a=g=9.8$

The body has zero acceleration at the highest point $(t=3)$. At this point, the velocity-time graph crosses the x-axis.

