Answer on Question \#60387-Physics-Mechanics-Relativity

A ball is thrown with a velocity of 7 root $2 \mathrm{~m} / \mathrm{s}$ at an angle of 45 degree with the horizontal. It just clears two vertical poles of height 90 cm . Find the separation between the poles. Take g=9.8

Solution

Let t be the time after which the ball is at the top of the poles.

$$
\begin{gathered}
y(t)=0.9 \mathrm{~m} \\
v_{y}(0)=v \sin 45^{\circ}=7 \sqrt{2} \frac{1}{\sqrt{2}}=7 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Now,

$$
\begin{gathered}
y(t)=v_{y}(0) t+\frac{a_{y} t^{2}}{2} \\
0.9=7 t-(9.8) t^{2} \\
4.9 t^{2}-7 t+0.9=0
\end{gathered}
$$

On solving, we get

$$
t_{1}=\frac{1}{7} s \text { and } t_{2}=\frac{9}{7} s
$$

Hence the ball is at A after $\frac{1}{7} \mathrm{~s}$ and at B after $\frac{9}{7} \mathrm{~s}$.

$$
\begin{gathered}
O P=v_{x} t_{1}=7 \frac{1}{7}=1 \mathrm{~m} \\
O Q=v_{x} t_{2}=7 \frac{9}{7}=9 \mathrm{~m} \\
P Q=9-1=8 \mathrm{~m}
\end{gathered}
$$

