Answer on Question\#60306 -Physics- Mechanics -Relativity

You throw a ball straight up with an initial velocity of $14.3 \mathrm{~m} / \mathrm{s}$. On the way up it passes a tree branch at a height of 7.8 m . How much additional time will pass before the ball passes the tree branch on the way back down? Numeric: A numeric value is expected and not an expression. t = \qquad

Solution.

$v_{0}=14.3 \mathrm{~m} / \mathrm{s}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$h=7.8 \mathrm{~m}$
$\Delta t-$?

The movement of the ball consists of two parts. First, the ball moves upward until its speed reaches zero then moves down. The ball moves with an initial velocity $v_{0}=14.3 \mathrm{~m} / \mathrm{s}$ and constant acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards. Hence the height of the ball is described by the equation

$$
\begin{gathered}
h=v_{0} t-\frac{g t^{2}}{2} \rightarrow 7.8=14.3 t-4.9 t^{2} \\
4.9 t^{2}-14.3 t+7.8=0
\end{gathered}
$$

Solve this quadratic equation

$$
D=14.3^{2}-4 \cdot 4.9 \cdot 7.8=51.61
$$

$t_{1}=\frac{14.3-\sqrt{51.61}}{2 \cdot 4.9} \approx 0.7 \mathrm{~s}$ and $t_{2}=\frac{14.3+\sqrt{51.61}}{2 \cdot 4.9} \approx 2.2 \mathrm{~s}$
t_{1} corresponds to the time during ascent to a height of h after the start of movement; the time t_{2} corresponds to the time of descent to a height of h after the start of movement. Therefore $\Delta t=t_{2}-t_{1}=2.2-0.7=1.5 \mathrm{~s}$

Answer: $\Delta t=1.5 \mathrm{~s}$

