Answer on Question\#60215 -Physics- Mechanics -Relativity

A heavy stone hanging from a massless string of length 15 m is projected horizontally with speed $147 \mathrm{~m} / \mathrm{s}$. The speed of the particle at the point where the tension in the string equals the weight of the particle is :

Solution. The stone moves under the action of gravity $m g$ and the tension force of the thread T.

According to the statement of the problem $v_{0}=147 \mathrm{~m} / \mathrm{s}, L=15 \mathrm{~m}$. According to Newton's second law.

$$
m \vec{a}=m \vec{g}+\vec{T}
$$

We write it in the projection on the X-axis coinciding with the string at the moment when the string forms an angle α with the vertical (as shown in figure)

$$
m a_{x}=-m g \cos \alpha+T
$$

As the stone moves in the radius of the circle L, a_{x} is the centripetal acceleration is equal to:

$$
a_{x}=\frac{v^{2}}{L}
$$

where v - velocity at this time. According to the statement of the problem $T=m g$. Hence

$$
m \frac{v^{2}}{L}=-m g \cos \alpha+m g \rightarrow \frac{v^{2}}{L}=g(1-\cos \alpha) \rightarrow 1-\cos \alpha=\frac{v^{2}}{g L}
$$

Using the law of conservation of energy:
In the initial moment of time the body will have only kinetic energy $\frac{m v_{0}^{2}}{2}$, at some point in time the body has both potential and kinetic energy $\frac{m v^{2}}{2}+m g h$, where $h=L-L \cos \alpha=$ $L(1-\cos \alpha)$.)(solve right triangle shown in figure). Therefore law of conservation of energy

$$
\begin{gathered}
\frac{m v_{0}^{2}}{2}=\frac{m v^{2}}{2}+m g L(1-\cos \alpha) \\
\frac{v_{0}^{2}}{2}=\frac{v^{2}}{2}+g L(1-\cos \alpha) \rightarrow v_{0}^{2}=v^{2}+2 g L(1-\cos \alpha)
\end{gathered}
$$

Using the formula $1-\cos \alpha=\frac{v^{2}}{g L}$ get $v_{0}^{2}=v^{2}+2 g L \frac{v^{2}}{g L} \rightarrow v_{0}^{2}=3 v^{2}$.
$v=\frac{v_{0}}{\sqrt{3}} \approx 84.87 \mathrm{~m} / \mathrm{s}$.
Answer: $v=\frac{v_{0}}{\sqrt{3}} \approx 84.87 \mathrm{~m} / \mathrm{s}$.

