The speed of a boat is $5 \mathrm{~km} / \mathrm{hr}$ in still water. It crosses a river of width 1.0 km along the shortest possible path in 15 minute. The velocity of the river water (km / h) is
(1) 3
(2) 1
(3) 4
(4) 5

Solution.

To cross the river in the shortest path, the boat must move perpendicular to the shores. Therefore, the boat should move at a specific angle α, so that its own speed will compensate the lateral displacement caused by the flow speed:

The resulting speed of the boat in respect to the shores:
$v_{\text {boat }}^{2}=v_{\text {cross }}^{2}+v_{\text {flow }}^{2}$
At the same time:
$v_{\text {cross }}=\frac{d}{\Delta t}=\frac{1}{15 / 60}=2.5 \mathrm{~km} / \mathrm{h}$
$v_{\text {flow }}=\sqrt{v_{\text {boat }}^{2}-v_{\text {cross }}^{2}}=\sqrt{5^{2}-2.5^{2}}=4.33 \mathrm{~km} / \mathrm{h}$

