Answer on Question \#60190, Physics / Other |

a body starts from rest accelerates uniformly at rate of $10 \mathrm{~cm} / \mathrm{s}^{\wedge} 2$ and retards at $20 \mathrm{~cm} / \mathrm{s}^{\wedge} 2$. find least time in which it can complete 5 km journey if max velocity attained is $72 \mathrm{~km} / \mathrm{hr}$

Solution:

It will accelerate to max possible speed with the max possible acceleration and then it will slow down with the max possible negative acceleration

So the uniform acceleration is

$$
a_{1}=10 \mathrm{~cm} / \mathrm{s}^{2} \cdot[1 \mathrm{~m} / 100 \mathrm{~cm}]=0.1 \mathrm{~m} / \mathrm{s}^{2}
$$

The maximum speed is

$$
v_{\max }=72 \mathrm{~km} / \mathrm{h} \cdot[1000 \mathrm{~m} / \mathrm{km}] \times[1 \mathrm{~h} / 3600 \mathrm{~s}]=20 \mathrm{~m} / \mathrm{s}
$$

and max uniform slowing acceleration is

$$
a_{2}=-20 \mathrm{~cm} / \mathrm{s}^{2} \cdot[1 \mathrm{~m} / 100 \mathrm{~cm}]=-0.2 \mathrm{~m} / \mathrm{s}^{2} .
$$

The time to accelerate to max speed $=t_{1}$, at max speed from t_{1} to t_{2}, slowing from $20 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ from t_{2} to t_{3} and that means we have to find t_{3} because t_{3} is the least time to complete the trip.

Finding of t_{1} :

$$
t_{1}=\frac{v_{\max }-v_{0}}{a_{1}}=\frac{20}{0.1}=200 \mathrm{~s}
$$

The distance is

$$
d_{1}=\frac{a_{1} t_{1}^{2}}{2}=\frac{0.1 \cdot 200^{2}}{2}=2000 \mathrm{~m}
$$

The time of retarding is

$$
t_{2}=\frac{0-v_{\max }}{a_{2}}=\frac{-20}{-0.2}=100 \mathrm{~s}
$$

The distance when retarding is

$$
d_{2}=v_{\max } t_{2}+\frac{a_{2} t_{2}^{2}}{2}=20 \cdot 100-\frac{0.2 \cdot 100^{2}}{2}=1000 \mathrm{~m}
$$

The remain distance is

$$
d_{3}=d-d_{1}-d_{2}=5000-2000-1000=2000 \mathrm{~m}
$$

The distance d_{3} will moving at maximum speed, and time t_{3} is

$$
t_{3}=\frac{d_{3}}{v_{\max }}=\frac{2000}{20}=100 \mathrm{~s}
$$

Total time is

$$
t=t_{1}+t_{2}+t_{3}=200+100+100=400 \mathrm{~s}
$$

So the least time required to complete the trip is 400 s .
Answer: 400 s .

