Answer on Question \#60184, Physics / Electromagnetism

12 equal charges are ' q ' are situated at the corner of a regular 12-sided polygon.
what is
a)net force on test charge Q
b)electric field
c) potential
at the centre?

Solution:

a)

In order to find the net force on Q apply the principle of superposition and sum the forces acting on Q . The model for the net force on Q is

$$
\vec{F}_{Q}=\sum_{n=1}^{12} \frac{1}{4 \pi \epsilon_{0}} \frac{q Q}{R^{2}}\left(\cos \left(\frac{n \pi}{6}\right) \hat{i}+\sin \left(\frac{n \pi}{6}\right) \hat{j}\right)
$$

By symmetry each nth radial contains two charges q which results in zero net force. For example,

$$
\begin{gathered}
\frac{1}{4 \pi \epsilon_{0}} \frac{q Q}{R^{2}}\left(\cos \left(\frac{n \pi}{6}\right) \hat{i}+\sin \left(\frac{n \pi}{6}\right) \hat{j}\right)+\frac{1}{4 \pi \epsilon_{0}} \frac{q Q}{R^{2}}\left(\cos \left(\frac{(n+6) \pi}{6}\right) \hat{i}+\sin \left(\frac{(n+6) \pi}{6}\right) \hat{j}\right)=\overrightarrow{0} \\
\frac{1}{4 \pi \epsilon_{0}} \frac{q Q}{R^{2}}\left[\left(\cos \left(\frac{n \pi}{6}\right)+\cos \left(\frac{n \pi}{6}+\pi\right)\right) \hat{i}+\left(\sin \left(\frac{n \pi}{6}\right)+\sin \left(\frac{n \pi}{6}+\pi\right)\right) \hat{j}\right]=\overrightarrow{0}
\end{gathered}
$$

Summing the six radials yields $\vec{F}_{Q}=0$.
b)

Because of the symmetry, the net field is although equal zero.

$$
\vec{E}_{Q}=0
$$

c)

Suppose distance from each point to center is r :
The electric potential does not "cancel" out, so this sum will add all potentials

$$
V=12 \frac{k q}{r}
$$

