Answer on the question \#60145, Physics / Optics

Question:

how do i determine the energy of a photon with a save length of $3.5 \times 10^{\wedge}-8$ (negative 8) m ? When $\mathrm{C}=3.00 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s} \mathrm{H}=6.63 \times 10^{\wedge}-34 \mathrm{~J}-\mathrm{s}$

Solution:

The relation between energy and wavelength is the following:

$$
E=h \frac{c}{\lambda^{\prime}}
$$

where h is the Planck's constant, c is the velocity of light and λ is the wavelength.

$$
E=6.63 \cdot 10^{-34}(\mathrm{~J} \cdot \mathrm{~s}) \cdot \frac{3 \cdot 10^{8}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)}{3.5 \cdot 10^{-8}(\mathrm{~m})}=5.69 \cdot 10^{-18} \mathrm{~J}
$$

Answer: $5.69 \cdot 10^{-18} \mathrm{~J}$

