

Answer on the question #60145, Physics / Optics

Question:

how do i determine the energy of a photon with a save length of 3.5×10^{-8} (negative 8) m?
When $C = 3.00 \times 10^8$ m/s $H = 6.63 \times 10^{-34}$ J-s

Solution:

The relation between energy and wavelength is the following:

$$E = h \frac{c}{\lambda},$$

where h is the Planck's constant, c is the velocity of light and λ is the wavelength.

$$E = 6.63 \cdot 10^{-34} (J \cdot s) \cdot \frac{3 \cdot 10^8 (m \cdot s^{-1})}{3.5 \cdot 10^{-8} (m)} = 5.69 \cdot 10^{-18} J$$

Answer: $5.69 \cdot 10^{-18} J$