Answer on Question \#60134, Physics / Mechanics | Relativity
A particle moves along a circle of radius ' r ' with constant tangential acceleration. If the velocity of the particle is ' v ' at the end of second revolution, after the revolution has started then the tangential acceleration is

Solution:

Tangential acceleration:
$\mathrm{a}_{\tau}=\frac{\mathrm{dv}}{\mathrm{dt}}(1)$,
where dv - change of speed,
dt - change of time
The period of rotation:
$\mathrm{T}=\frac{2 \pi}{\omega}(2)$,
where ω - cyclic velocity
The relationship between linear velocity v and cyclic velocity ω :
$\mathrm{v}=\omega \mathrm{r}(3)$,
where r - radius of the circle
Of (3) $\Rightarrow \omega=\frac{\mathrm{v}}{\mathrm{r}}(4)$
(4) in (2): $T=\frac{2 \pi r}{v}(5)$
$d v=v-0=v(6)$
$\mathrm{dt}=2 \mathrm{~T}(7)$
(6) and (7) in (1):
$\mathrm{a}_{\tau}=\frac{\mathrm{v}}{2 \mathrm{~T}}(8)$
(5) in (8): $\mathrm{a}_{\tau}=\frac{\mathrm{v}^{2}}{4 \pi \mathrm{r}}$

Answer:

$\mathrm{a}_{\tau}=\frac{\mathrm{v}^{2}}{4 \pi \mathrm{r}}$

