Answer on Question \#60032-Physics-Mechanics-Relativity

A clown in circus juggles with n balls using only one hand. He throws each ball vertically upwards with the same speed V at equal time intervals T . Denote acceleration of free fall by g .
(a) Find expressions for the speed of projection and height of the ith ball above his hand when he throws the n th ball.

Let he uses $\mathrm{n}=4$ balls and when he throws the fourth ball, the distance between the second and third ball is $d=50 \mathrm{~cm}$.
(b) Where is the first ball, when the juggler throws the fourth ball?
(c) What is maximum height attained by each ball above the hands of the juggler?

Solution

(a)

$$
\begin{gathered}
v=V-g t, h=V t-\frac{g t^{2}}{2} \\
t=T(n-i)
\end{gathered}
$$

The total time of flight is

$$
\tau=n T
$$

At this time:

$$
\begin{gathered}
v=V-g n T=-V \\
V=\frac{g n T}{2}
\end{gathered}
$$

Therefore,

$$
h=V t-\frac{g t^{2}}{2}=\frac{g n T}{2} T(n-i)-\frac{g}{2} T^{2}(n-i)^{2}=\frac{g T^{2} i(n-i)}{2}
$$

(b)

$$
\begin{gathered}
h(2)=\frac{g T^{2} 2(4-2)}{2}=2 g T^{2} \\
h(3)=\frac{g T^{2} 3(4-3)}{2}=\frac{3}{2} g T^{2} \\
d=2 g T^{2}-\frac{3}{2} g T^{2}=\frac{1}{2} g T^{2} \\
h(1)=\frac{g T^{2} 1(4-1)}{2}=\frac{3}{2} g T^{2}=3 d=150 \mathrm{~cm}=1.5 \mathrm{~m} .
\end{gathered}
$$

(c)

$$
H=h\left(\frac{\tau}{2}\right)=h\left(\frac{n T}{2}\right)=h\left(\frac{4 T}{2}\right)=h(2 T)=\frac{g 4 T}{2} 2 T-\frac{g}{2}(2 T)^{2}=2 g T^{2}
$$

$$
H=4 d=2 m .
$$

https://www.AssignmentExpert.com

