Answer on Question \#60022, Physics - Mechanics | Relativity

A model rocket fired from the ground ascends with constant upward acceleration.
After 1.0 s from firing a small bolt is dropped from the rocket and after 5.0 s from firing, its fuel is then finished. The bolt strikes the ground after 2.0 s from the instant it was dropped. Acceleration due to gravity is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(a) acceleration of the rocket while running on its fuel is $8.0 \mathrm{~m} / \mathrm{s}^{2}$
(b) rocket was at height 100 m above the ground when its fuel was finished.
(c) maximum speed of the rocket during its flight is $40 \mathrm{~m} / \mathrm{s}$
(d) total airtime of the rocket is 15 s

THE QUESTION IS HOW MANY STATEMENTS ARE TRUE?
CAN U PLEASE EXPLAIN IN DETAIL

Solution:

Equations for rocket:

$$
\begin{aligned}
h_{1} & =\frac{a t_{1}^{2}}{2} \\
a & =\frac{v_{1}}{t_{1}}
\end{aligned}
$$

where initial velocity $\mathrm{v}_{0}=0, \mathrm{t}_{1}=1.0 \mathrm{~s}$ and a is acceleration.

Substituting we have

$$
h_{1}=\frac{v_{1} t_{1}}{2}
$$

Equations for bolt:

$$
h=h_{1}+v_{1} t_{2}-\frac{g t_{2}^{2}}{2}
$$

where initial velocity $v_{1}, t_{2}=2.0 s$ and final $h=0$.

We obtain system of equations:

$$
\begin{gathered}
h_{1}=\frac{v_{1}}{2} \\
h_{1}+2 v_{1}-20=0 \\
\frac{v_{1}}{2}=20-2 v_{1} \\
v_{1}=8 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Thus,

$$
a=\frac{v_{1}}{t_{1}}=\frac{8}{1}=8 \mathrm{~m} / \mathrm{s}^{2}
$$

(a) acceleration of the rocket while running on its fuel is $8.0 \mathrm{~m} / \mathrm{s}^{2}$ is TRUE

$$
h_{5}=\frac{a t_{5}^{2}}{2}=8 \cdot \frac{5^{2}}{2}=100 \mathrm{~m}
$$

(b) rocket was at height 100 m above the ground when its fuel was finished is TRUE.

The maximum speed

$$
v=a t_{5}=8 \cdot 5=40 \mathrm{~m} / \mathrm{s}
$$

(c) maximum speed of the rocket during its flight is $40 \mathrm{~m} / \mathrm{s}$ is TRUE.

The airtime of the rocket after the fuel was finished

$$
\begin{gathered}
h=h_{5}+v_{5} t-\frac{g t^{2}}{2} \\
h_{5}=100 \mathrm{~m} \\
v_{5}=40 \frac{\mathrm{~m}}{\mathrm{~s}} \\
h=0 \\
5 t^{2}-40 t-100=0 \\
t=10 \mathrm{~s}
\end{gathered}
$$

Thus, the total time is

$$
\text { total time }=t_{5}+t=5+10=15 \mathrm{~s}
$$

(d) total airtime of the rocket is 15 s is TRUE.

Output: a, b, c, d are TRUE.

