Answer on Question 59959, Physics, Electric Circuits

Question:

The electric field at a distance of 20 cm from the centre of a uniformly charged dielectric sphere of radius 10 cm is $100 \mathrm{~V} / \mathrm{m}$. Then, the electric field at 3 cm distance from the centre of the sphere is:
a) $150 \mathrm{~V} / \mathrm{m}$
b) $125 \mathrm{~V} / \mathrm{m}$
c) $120 \mathrm{~V} / \mathrm{m}$
d) zero

Solution:

Let's find the formula for electric field inside and outside the sphere. Let's use the Gauss's Law. It states that the net electric flux through any closed surface is equal to $1 / \varepsilon$ times the net electric charge within that closed surface:

$$
\Phi_{E}=\frac{q}{\varepsilon_{0}},
$$

here, Φ_{E} is the electric flux through a closed surface S enclosing any volume V, q is the total charge enclosed within S, and ε_{0} is the permettivity of free space.

So, let's first find the electric field inside the sphere $(r<R)$. In this case, the formula for the electric flux looks like:

$$
\Phi_{E}(r)=\int E(r) \cdot d S=E(r) \int d S=4 \pi r^{2} E(r)
$$

here, $E(r)$ is the electric field, $d S$ is the vector representing an infinitesimal element of area of the surface, symbol dot (\cdot) represents the dot product of two vectors.

The charge of the sphere at the distance r from the centre of the sphere is equal to:

$$
q(r)=V \rho=\frac{4}{3} \pi \rho r^{3},(1)
$$

here, V is the volume of the charged sphere, ρ is the volume charge density.

The charge of the sphere at the distance R from the centre of the sphere is equal to:

$$
q(R)=Q=V \rho=\frac{4}{3} \pi \rho R^{3},(2)
$$

here, R is the radius of the sphere.
From the equations (1) - (2) we can find $q(r)$. Let's divide equation (1) by equation (2), we get:

$$
q(r)=q(R) \frac{r^{3}}{R^{3}}=Q \frac{r^{3}}{R^{3}}
$$

Then, from the Gauss's law we get:

$$
\Phi_{E}(r)=4 \pi r^{2} E(r)=\frac{Q r^{3}}{\varepsilon_{0} R^{3}} .
$$

Solving for $E(r)$ we get the electric field inside the sphere $(r<R)$:

$$
E(r)=\frac{Q r}{4 \pi \varepsilon_{0} R^{3}}
$$

Similarly, we can find the electric field outside the sphere $(r>R)$. In this case, the formula for the electric flux will be

$$
\Phi_{E}(r)=4 \pi r^{2} E(r)=\frac{Q}{\varepsilon_{0}} .
$$

Solving for $E(r)$ we get the electric field outside the sphere $(r>R)$:

$$
E(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} .
$$

Finally, we get:

$$
E=\left\{\begin{array}{ll}
\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}, & r>R \\
\frac{Q r}{4 \pi \varepsilon_{0} R^{3}}, & r<R
\end{array},\right.
$$

Let's first find the charge of the sphere Q from the first equation:

$$
\begin{gathered}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} \\
Q=4 \pi \varepsilon_{0} E r^{2}=4 \pi \cdot 8.85 \cdot 10^{-12} \frac{C}{V \cdot m} \cdot 100 \frac{V}{m} \cdot(0.2 \mathrm{~m})^{2}=445 \cdot 10^{-12} \mathrm{C} .
\end{gathered}
$$

As we know the charge of the sphere Q, we can find the electric field at $r=3 \mathrm{~cm}$ distance from the centre of the sphere:

$$
E=\frac{Q r}{4 \pi \varepsilon_{0} R^{3}}=\frac{445 \cdot 10^{-12} \mathrm{C} \cdot 0.03 \mathrm{~m}}{4 \pi \cdot 8.85 \cdot 10^{-12} \frac{C}{V \cdot m} \cdot(0.1 \mathrm{~m})^{3}}=120 \frac{\mathrm{~V}}{\mathrm{~m}} .
$$

Answer:

c) $120 \mathrm{~V} / \mathrm{m}$
https://www.AssignmentExpert.com

