Answer on Question \#59929-Physics-Quantum Mechanics

Q. A particle is confined between rigid walls by a distance L.
(a) Show that the probability P that it will be found within a distance $L / 3$ from one wall is given by

$$
P=\frac{1}{3}\left[1-\frac{\sin \frac{2 n \pi}{3}}{\frac{2 n \pi}{3}}\right]
$$

(b) Evaluate probability for (i) $n=1$, (ii) $n=2$, (iii) $n=3$

Solution

(a) A wave function is

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
$$

The probability P that it will be found within a distance $L / 3$ from one wall is

$$
\begin{gathered}
P=\int_{0}^{\frac{L}{3}}\left|\psi_{n}\right|^{2} d x=\int_{0}^{\frac{L}{3}} \frac{2}{L} \sin ^{2} \frac{n \pi x}{L} d x=\frac{2}{L}\left(\int_{0}^{\frac{L}{3}}\left(\frac{1}{2}-\frac{1}{2} \cos \frac{2 n \pi x}{L}\right) d x\right) \\
P=\left(\frac{x}{L}-\frac{\sin \frac{2 n \pi x}{L}}{2 n \pi}\right)_{0}^{\frac{L}{3}}=\frac{1}{3}\left[1-\frac{\sin \frac{2 n \pi}{3}}{\frac{2 n \pi}{3}}\right]
\end{gathered}
$$

(b)(i)

$$
P(n=1)=\frac{1}{3}\left[1-\frac{\sin \frac{2 \pi}{3}}{\frac{2 \pi}{3}}\right]=\frac{1}{3}\left[1-\frac{\frac{\sqrt{3}}{2}}{\frac{2 \pi}{3}}\right]=\frac{1}{3}\left[1-\frac{3 \sqrt{3}}{4 \pi}\right]=0.196
$$

(ii)

$$
P(n=2)=\frac{1}{3}\left[1-\frac{\sin \frac{4 \pi}{3}}{\frac{4 \pi}{3}}\right]=\frac{1}{3}\left[1+\frac{\frac{\sqrt{3}}{2}}{\frac{4 \pi}{3}}\right]=\frac{1}{3}\left[1+\frac{3 \sqrt{3}}{8 \pi}\right]=0.402
$$

(iii)

$$
P(n=3)=\frac{1}{3}\left[1-\frac{\sin 2 \pi}{2 \pi}\right]=\frac{1}{3}[1-0]=\frac{1}{3}=0.333
$$

