Answer on Question 59904, Physics, Molecular Physics, Thermodynamics

Question:

904.5 g of ice is melted at a temperature of $29^{\circ} \mathrm{F}$. Find the change in entropy. Answer in units of J / K.

Solution:

First of all, let's convert Fahrenheit to Kelvin:

$$
T_{(K)}=\left(T_{(\mathrm{F})}+459.67\right) \cdot \frac{5}{9}=\left(29^{\circ} \mathrm{F}+459.67\right) \cdot \frac{5}{9}=271.5 \mathrm{~K} .
$$

We can find the change in entropy from the formula:

$$
\Delta S=\frac{Q}{T}
$$

here, Q is the amount of heat needed to melt the ice, T is the temperature.
Let's find the amount of heat needed to melt the ice:

$$
Q=m_{i c e} L_{f},
$$

here, $m_{\text {ice }}$ is the mass of ice, $L_{f}=3.33 \cdot 10^{5} \mathrm{~J} / \mathrm{kg}$ is the latent heat of fusion of ice.
Finally, we can calculate the change in entropy:

$$
\Delta S=\frac{Q}{T}=\frac{m_{i c e} L_{f}}{T}=\frac{0.9045 \mathrm{~kg} \cdot 3.33 \cdot 10^{5} \frac{\mathrm{~J}}{\mathrm{~kg}}}{271.5 \mathrm{~K}}=1109.4 \frac{\mathrm{~J}}{\mathrm{~K}} .
$$

Answer:
$\Delta S=1109.4 \frac{\mathrm{~J}}{\mathrm{~K}}$.

