Question \#59895, Physics / Other | for completion.

Four railroad cars, each of mass $2.50 \times 10^{\wedge} 4 \mathrm{~kg}$, are coupled together and coasting along horizontal tracks at speed vi toward the south. A very strong but foolish actor, riding on the second car, uncouples the front car and gives it a big push, increasing its speed to 4 m / s southward. The remaining three cars continue moving south, now at $2 \mathrm{~m} / \mathrm{s}$.
a) find the initial speed of the four cars.
b) by how much did the potential energy within the body of the actor change ?
$m=2,5 \cdot 10^{4} \mathrm{~kg}$
$v_{1}=2 \mathrm{~m} / \mathrm{s}$
$v_{2}=4 \mathrm{~m} / \mathrm{s}$
$v_{i}=$?
$\Delta E_{p}=$?

Solution

a) According to the law of conservation of momentum: $P_{1}=P_{2}$ that is,

$$
4 m v_{i}=3 m v_{1}+m v_{2},
$$

where v_{1} - speed of the three cars, v_{2} - speed of car.
$4 m v_{i}=6 m+4 m=10 m$
$v_{i}=2,5 \mathrm{~m} / \mathrm{s}$
b) The change of potential energy equal to the change of kinetic energy.
$\Delta E_{P}=\Delta E_{K}$
$\Delta E_{K}=E_{K}-E_{K}=\frac{4 m v_{i}^{2}}{2}-\left(\frac{3 m v_{1}^{2}}{2}+\frac{m v_{2}^{2}}{2}\right)=2 m v_{i}^{2}-(6 m+8 m)=12,5 m-14 m=$ $-1,5 m=-3,75 \cdot 10^{4} \mathrm{~J}$

The potential energy within the body of the actor decreased by the amount ot 3,75 $\cdot 10^{4} \mathrm{~J}$
Answer the questions: $v_{1}=2,5 \frac{\mathrm{~m}}{\mathrm{~s}}, \Delta E_{p}=-3,75 \cdot 10^{4} \mathrm{~J}$.

