

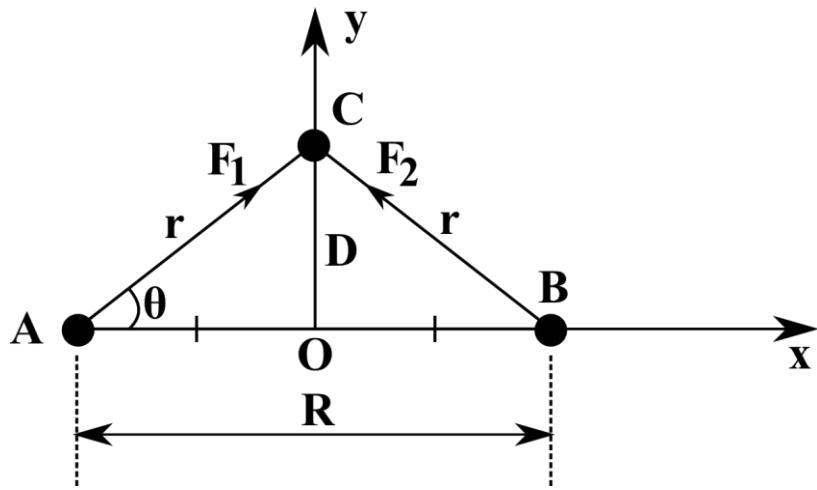
Answer on Question 59862, Physics, Electromagnetism

Question:

Two equal point charges A and B are R distance apart. A third point charge placed on the perpendicular bisector at a distance D from the centre will experience maximum electrostatic force when D equals to what?

Solution:

Here's the sketch of our task:



Two equal point charges A and B are R distance apart. A third point charge C placed on the perpendicular bisector at a distance D from the centre (point O).

Let's first find the net electrostatic force on point charge q_C due to point charges q_A and q_B . It is obviously, that the net electrostatic force on q_C is the vector sum of F_1 and F_2 , the forces due to charges q_A and q_B . We can find the magnitudes of these forces from the Coulomb's law:

$$F_1 = k \frac{q_A q_C}{r_{AC}^2},$$

$$F_2 = k \frac{q_B q_C}{r_{BC}^2},$$

here, k is the Coulomb's constant; q_A , q_B , q_C are the point charges; r_{AC} , r_{BC} is the distances between the point charges q_A , q_C and q_B , q_C , respectively.

We can find the distance r_{AC} between the two point charges q_A and q_C from the geometry. By the definition, the perpendicular bisector cuts the line AB into two equal

parts AO and OB . Then, from the right triangle AOC we can find r . By the Pythagorean theorem we have:

$$AC^2 = AO^2 + OC^2,$$

$$r_{AC}^2 = \left(\frac{R}{2}\right)^2 + D^2,$$

$$r_{AC} = \sqrt{\left(\frac{R}{2}\right)^2 + D^2}.$$

Similarly, from the triangle BOC we can find the distance r_{BC} between the two point charges q_B and q_C :

$$r_{BC} = \sqrt{\left(\frac{R}{2}\right)^2 + D^2}.$$

Thus, the magnitudes of the forces F_1 and F_2 will be ($q_A = q_B = q$):

$$F_1 = F_2 = k \frac{qq_C}{\left(\frac{R}{2}\right)^2 + D^2}.$$

Then, we can find the projections of the forces F_1 and F_2 on axis x and y :

$$F_x = F_{1x} - F_{2x} = F_1 \cos \theta - F_2 \cos \theta = 0,$$

$$\begin{aligned} F_y &= F_{1y} + F_{2y} = F_1 \sin \theta + F_2 \sin \theta = F_1 \frac{D}{r_{AC}} + F_2 \frac{D}{r_{BC}} = \\ &= 2k \frac{qq_C}{\left(\frac{R}{2}\right)^2 + D^2} \cdot \frac{D}{\sqrt{\left(\frac{R}{2}\right)^2 + D^2}}. \end{aligned}$$

Finally, the net electrostatic force will be:

$$F_{net} = \sqrt{F_x^2 + F_y^2} = 2k \frac{qq_C}{\left(\frac{R}{2}\right)^2 + D^2} \cdot \frac{D}{\sqrt{\left(\frac{R}{2}\right)^2 + D^2}}.$$

For the maximum electrostatic force, we have:

$$\frac{dF(D)}{dD} = 0,$$

$$2kqq_C \cdot \frac{d}{dD} \left(\frac{D}{\left(\left(\frac{R}{2} \right)^2 + D^2 \right)^{\frac{3}{2}}} \right) = 0,$$

$$-2kqq_C \cdot \left(\frac{8D^2 - R^2}{4 \left(\frac{R^2}{4} + D^2 \right)^{\frac{5}{2}}} \right) = 0,$$

$$8D^2 - R^2 = 0,$$

$$8D^2 = R^2,$$

$$D^2 = \frac{R^2}{8},$$

$$D = \frac{R}{2\sqrt{2}}.$$

Answer:

$$D = \frac{R}{2\sqrt{2}}.$$