Answer on Question \#59827-Physics-Other

An electric heater raises the temperature of 120 g of water in a thin light vessel through 10 K IN 2 min , when placed in 70 g of water contained in a metal vessel of mass 0.55 kg the temperature rises through 9 K in the same time. Calculate from the above:
i. The heat supplied in 2 min by the heater
ii. The power of the heater
iii. The heat supplied to the metal vessel
iv. The heat capacity of the vessel and the specific heat capacity of its materials.
[S.H.C of water $=4.2 \mathrm{Jg}-1 \mathrm{~K}-1$]

Solution

i.

$$
Q=m_{w} c_{w} \Delta T_{1}=120 \cdot 4.2 \cdot 10=5040 \mathrm{~J}
$$

ii.

$$
P=\frac{Q}{t}=\frac{5040}{120}=42 \mathrm{~W}
$$

iii.

$$
Q_{1}=P t-m_{w}^{\prime} c_{w} \Delta T_{2}=Q-m_{w}^{\prime} c_{w} \Delta T_{2}=5040-70 \cdot 4.2 \cdot 9=2394 \mathrm{~J}
$$

iV.

$$
\begin{aligned}
& C=\frac{Q_{1}}{\Delta T_{2}}=\frac{2394}{9}=266 \frac{\mathrm{~J}}{\mathrm{~K}} \\
& c=\frac{C}{m}=\frac{266}{0.55}=484 \frac{\mathrm{~J}}{\mathrm{kgK}}
\end{aligned}
$$

