Answer on Question 59742, Physics, Electromagnetism

Question:

Given that the relative permittivity of porcelain $\varepsilon_r = 6.0$, calculate its electrical susceptibility in the presence of an electric field.

Solution:

Electrical susceptibility is defined as the constant of proportionality relating an electric field \mathbf{E} to the induced dielectric polarization density \mathbf{P} as follows:

$$P = \varepsilon_0 \chi_e E$$
,

here, P is the polarization density, ε_0 is the electric permittivity of free space, χ_e is the electrical susceptibility of the material and E is the electric field.

From this formula we can find the electrical susceptibility of the material:

$$\chi_e = \frac{P}{\varepsilon_0 E} = \frac{\varepsilon}{\varepsilon_0} - 1 = \varepsilon_r - 1,$$

here, $\varepsilon_r = \varepsilon/\varepsilon_0$ is the relative permittivity, or dielectric constant of the material, ε is the permittivity of the material.

Thus, from the last formula we can calculate the electrical susceptibility of porcelain in the presence of an electric field:

$$\chi_e = \varepsilon_r - 1 = 6.0 - 1.0 = 5.0.$$

Answer:

 $\chi_e = 5.0.$